Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T07:01:41.373Z Has data issue: false hasContentIssue false

Enhancement of line X-ray emission from iron plasma created by laser irradiation of porous targets

Published online by Cambridge University Press:  22 March 2011

R. Fazeli*
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran
M.H. Mahdieh
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran
G.J. Tallents
Affiliation:
Department of Physics, University of York, York, United Kingdom
*
Address correspondence and reprint requests to: R Fazeli, Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran. E-mail: rfazeli@iust.ac.ir

Abstract

Enhancement of the line X-ray emission from iron plasma is investigated by simulating laser irradiation of both porous and solid targets. Spectral line intensities are calculated for selected lines of the iron plasma within the extreme ultra-violet lithography wavelength range 13.3–13.7 nm. The calculations show that X-ray yield in porous targets can be enhanced significantly in comparison with solid density targets. The results also show that for specified conditions of the driving laser, there are optimums conditions of the porous target in which maximum yield can be obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.A., Limpouch, J., Iskakov, A.B. & Nakano, H. (2002). Enhancement of X-ray line emission from plasmas produced by short high-intensity laser double pulses. Phys. Rev. E 65, 026403.CrossRefGoogle ScholarPubMed
Andriyash, A.V., Vikhlyaev, D.A., Gavrilov, D.S., Dmitrov, D.A., Zapysov, A.L., Kakshin, A.G., Loboda, E.A., Lykov, V.A., Magda, E.P., Politov, V.J., Potapov, A.V., Pronin, V.A., Rykovanov, G.N., Sukhanov, V.N., Tischenkov, A.S., Ugodenko, A.A. & Chefonov, O.V. (2006). X-ray laser generation under two-pulse irradiation of targets on picosecond SOKOL-P facility. Proc. 33rd EPS Conference on Plasma Phys. Rome, 19–23 June ECA 30I, P-2.009.Google Scholar
Attwood, D. (2007). Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge, UK: Cambridge University Press.Google Scholar
Belyaev, V.S., Vinogradov, V.I., Kurilov, A.S., Magunov, A.I., Matafonov, A.P., Pikuz, T.A., Skobelev, I.Yu. & Faenov, A.Y. (2003). On the role of prepulses during solid target heating by picosecond laser pulses. J. Exper. Theor. Physics 96, 897903.CrossRefGoogle Scholar
Benredjem, D., Moller, C., Dubau, J. & Ball, T. (2006). Temporal coherence of the Ni-like palladium X-ray laser in the transient pumping scheme. Phys. Rev. A 73, 063820.CrossRefGoogle Scholar
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.CrossRefGoogle Scholar
Chaker, M., La Fontaine, B., Cote, C.Y., Kieffer, J.C., Pepin, H., Talon, M.H., Enright, G.D. & Villeneuve, D.M. (1992). Laser plasma sources for proximity printing or projection X-ray lithography. J. Vac. Sci. Technol. B 10, 3239.Google Scholar
Chaker, M., Pepin, H., Bareau, V., Lafontaine, B., Toubhans, I., Fabbro, R. & Faral, B. (1988). Laser plasma X-ray sources for microlithography. J. Appl. Phys. 63, 892899.CrossRefGoogle Scholar
Chakera, J.A., Kumbhare, S.R. & Gupta, P.D. (1998). Characterization of X-ray contact microscopic imaging in keV spectral region using laser produced plasmas. J. X-ray Sci. Technol. 8, 135143.Google ScholarPubMed
Chakera, J.A., Kumbhare, S.R., Naik, P.A. & Gupta, P.D. (2007). Narrow band X-ray emission in the water-window spectral region from a laser heated gold copper mix-Z plasma. Appl. Phys. B 86, 519522.CrossRefGoogle Scholar
Chung, H.K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Ener. Density Physics 1, 312.CrossRefGoogle Scholar
Ciobanu, S.S., Negutu, C., Stafe, M., Vladoiu, I., Pais, V., Stancalie, V. & Puscas, N.N. (2008). Spectroscopic studies of laser induced aluminum and copper plasmas in air. Proc. 35th EPS Conference on Plasma Phys. Hersonissos 9-13 June ECA 32D, 144.Google Scholar
Daido, H. (2002). Review of soft X-ray laser researches and developments. Rep. Prog. Phys. 65, 1513.CrossRefGoogle Scholar
Demir, A., Kenar, N., Goktas, H. & Tallents, G.J. (2004). Modelling of Ne-like Copper X-ray laser driven by 1.2 ps short pulse and 280 ps background pulse configuration. Czech. J. Phys. 54, C344C348.CrossRefGoogle Scholar
Fazeli, R., Mahdieh, M.H. & Tallents, G.J. (2010). Numerical study of picosecond soft X-ray enhancement from porous targets irradiated by double laser pulses. Phys. Lett. A 374, 29362941.CrossRefGoogle Scholar
Ganeev, R.A., Chakera, J.A., Raghuramaiah, M., Sharma, A.K., Naik, P.A. & Gupta, P.D. (2001). Experimental study of harmonic generation from solid surfaces irradiated by multipicosecond laser pulses. Phys. Rev. E 63, 026402.CrossRefGoogle ScholarPubMed
Grobman, W.D. (1983). Handbook of Synchrotron Radiation. New York: Elsevier Science.Google Scholar
Hatanaka, K., Ono, H. & Fukumura, H. (2008). X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses. Appl. Phys. Lett. 93, 064103.CrossRefGoogle Scholar
Healy, S.B., Cairns, G.F., Lewis, C.L.S., Pert, G.J. & Plowes, J.A. (1995 a). A computational investigation of the neon-like germanium collisionally-pumped laser considering the effect of prepulses. IEEE 1, 949.Google Scholar
Healy, S.B., Djaoui, A., Holden, P.B., Pert, G.J. & Rose, S.J. (1995 b). A comparison of time-dependent ionization models for laser-produced plasmas. J. Phys. B 28, 1381.CrossRefGoogle Scholar
Holden, P.B., Healy, S.B., Lightbody, M.T.M., Pert, G.J., Plowes, J.A., Kingston, A.E., Robertson, E., Lewis, C.L.S. & Neely, D. (1994). A computational investigation of the neon-like germanium collisionally pumped laser. J. Phys. B 27, 341.CrossRefGoogle Scholar
Holstein, T. (1947). Imprisonment of Resonance Radiation in Gases. Phys. Rev. 72, 1212.CrossRefGoogle Scholar
Holstein, T. (1951). Imprisonment of Resonance Radiation in Gases. II. Phys. Rev. 83, 1159.CrossRefGoogle Scholar
Jin, F., Zeng, J. & Yuan, J. (2004). A detailed simulation for the transmission spectrum of hot aluminum plasma. Phys. Plasmas 11, 4318–22.CrossRefGoogle Scholar
Jin, F., Zeng, J. & Yuan, J. (2008). Detailed diagnostics of a laser produced aluminum plasma by the Kα satellites. JQSRT 109, 27072714.CrossRefGoogle Scholar
Kuba, J., Foord, M., Izumi, N., Key, M.H., Koch, J.A., Moon, S., Park, H.S., Phillips, T., Remington, B.A., Snavely, R.A., Wilks, S.C., Zhang, B., Akli, K., King, J., Theobald, W., Stoeckl, C., Heathcote, R. & Neely, D. (2005). Effects of Prepulse and Incidence Angle on High-Energy K-alpha Production. Proc. 32nd EPS Conference on Plasma Phys. Tarragona, 27 June – 1 July ECA 29C, D-4.001.Google Scholar
Kulcsar, G., Almawlawi, D., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L. & Marjoribanks, R.S. (2000). Intense oicosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 5149.CrossRefGoogle ScholarPubMed
Lang, K.R. (1999). Astrophysical Formulae: Radiation, Gas Processes, and High Energy Physics. Enlarged: Springer.CrossRefGoogle Scholar
Lawson, K.D. & Peakock, N.J. (1980). The analysis of the n = 2-2 transitions in the XUV spectra of Cr to Ni. J. Phys. B: Atom. Molec. Phys. 13, 33133334.CrossRefGoogle Scholar
Lawson, K.D., Peakock, N.J. & Stamp, M.F. (1981). Allowed and forbidden n = 2-2 transitions of the elements Ti, Cr, Fe, Co and Ni in Tokamak discharges. J. Phys. B: At. Mol. Phys. 14, 19291952.CrossRefGoogle Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Loupias, B., Perez, F., Benuzzi-Mounaix, A., Ozaki, N., Rabec, M., Gloahec, L.E., Pikuz, T.A., Faenov, A.Y., Aglitskiy, Y. & Koenig, M. (2009). Highly efficient, easily spectrally tunable X-ray backlighting for the study of extreme matter states. Laser Part. Beams 27, 601609.CrossRefGoogle Scholar
Mahdieh, M.H., Fazeli, R. & Tallents, G.J. (2009). Soft X-ray enhancement from a porous nano-layer on metal targets irradiated by long laser pulses. J. Phys. B: At. Mol. Opt. Phys. 42, 125602.CrossRefGoogle Scholar
Moscicki, T., Hoffman, J. & Szymanski, Z. (2008). Net emission coefficients of low temperature thermal iron-helium plasma. Optica Applicata 38, 365373.Google Scholar
Murnane, M.M., Kapteyn, H.C., Gordon, S.P., Bokor, J.Glytsis, E.N. & Falcone, R.W. (1993). Efficient coupling of high – intensity subpicosecond laser pulses into solids. Appl. Phys. Lett. 62, 1068.CrossRefGoogle Scholar
Nagel, D.J., Whitlock, R.R., Greig, J.R., Pechacek, R.E. & Peckerar, M.C. (1978). Laser-plasma source for pulsed X-ray lithography. Proc. SPIE 135, 46.CrossRefGoogle Scholar
Nakano, H., Andreev, A.A. & Limpouch, J. (2004). Femtosecond X-ray line emission from multilayer targets irradiated by short laser pulses. Appl. Phys. B 79, 469476.CrossRefGoogle Scholar
Neureuther, A.R. (1980). Synchrotron Radiation Research. (Winick, H. and Doniach, S. eds.). New York: Plenum Press.Google Scholar
Nishikawa, T., Nakano, H., Oguri, K., Uesugi, N., Nakano, M., Nishio, K. & Masuda, H. (2001). Nanocylinder-array structure greatly increases the soft X-ray intensity generated from femtosecond-laser-produced plasma. Appl. Phys. B 73, 185.CrossRefGoogle Scholar
Nishikawa, T., Nakano, H., Oguri, K., Uesugi, N., Nishio, K. & Masuda, H. (2004). Nanohole-array size dependence of soft X-ray generation enhancement from femtosecond-laser-produced plasma. J. Appl. Phys. 96, 7537.CrossRefGoogle Scholar
Nishikawa, T., Nakano, H., Uesugi, N. & Serikawa, T. (1998). Porous layer effects on soft X-ray radiation emitted from a plasma generated by 130-fs laser pulses irradiating a porous silicon target. Appl. Phys. B 66, 567570.CrossRefGoogle Scholar
Pert, G.J. (1983). The hybrid model and its application for studying free expansion. J. Fluid Mechan. 131, 401426.CrossRefGoogle Scholar
Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S. & Kumar, G.R. (2003). Metal nanoplasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett. 90, 115002.CrossRefGoogle ScholarPubMed
Rajeev, P.P., Ayyub, P., Bagchi, S. & Kumar, G.R. (2004). Nanostructures, local fields, and enhanced absorption in intense light-matter interaction. Opt. Lett. 29, 2662/4.CrossRefGoogle ScholarPubMed
Schriever, G., Mager, S., Naweed, A., Engel, A., Bergmann, K. & Lebert, R. (1998). Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy. Appl. Opt. 37, 12431248.CrossRefGoogle ScholarPubMed
Son, J., Cho, M., Kim, D., Ahn, B. & Kim, J. (2007). Prepulse effect on laser-induced water-window radiation from a liquid nitrogen jet. Appl. Phys. Lett. 90, 261502.CrossRefGoogle Scholar
Sugar, J. & Rowan, W.L. (1995). Improved wavelengths for prominent lines of Fe XX to Fe XXIII. J. Opt. Soc. Am. B 12, 14031405.CrossRefGoogle Scholar
Tomie, T., Kondo, H., Shimizu, H. & Lu, P. (1997). X-ray photoelectron spectroscopy with a laser plasma source. Proc. SPIE 3157, 176.CrossRefGoogle Scholar
Warlaumont, J.M. & Maldonado, J.R. (1981). Stationary Anode X-ray Source for the Evaluation of Conventional Resists. J. Vac. Sci. Technol. 19, 1200.CrossRefGoogle Scholar
Watanabe, T., Kinoshita, H., Sakaya, N., Shoki, T. & Lee, S.Y. (2005). Novel evaluation system for extreme ultraviolet lithography resist in new SUBARU. Jpn. J. Appl. Phys. 44, 55565559.CrossRefGoogle Scholar
Yang, J., Zhang, J., Ding, Y., Peng, Y., Li, J., Zheng, Z., Yang, G., Zhang, W. & Li, J. (2003). K-shell transition absorption measurement of radiatively heated Al plasma. Phys. Plasmas 10, 4881/5.CrossRefGoogle Scholar
Yulin, S., Benoit, N., Feigl, T. & Kaiser, N. (2006). Interface-engineered EUV multilayer mirrors. Microelectronic Engineering 83, 692694.CrossRefGoogle Scholar