Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T08:57:22.468Z Has data issue: false hasContentIssue false

Third harmonic order imaging as a focal spot diagnostic for high intensity laser-solid interactions

Published online by Cambridge University Press:  12 March 2009

B. Dromey
Affiliation:
Department of Physics and Astronomy, Queens University Belfast, Belfast, UK
C. Bellei
Affiliation:
Blackett Laboratory, Imperial College London, London, UK
D.C. Carroll
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, UK
R.J. Clarke
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory. Chilton, Didcot, Didcot, UK
J.S. Green
Affiliation:
Blackett Laboratory, Imperial College London, London, UK
S. Kar
Affiliation:
Department of Physics and Astronomy, Queens University Belfast, Belfast, UK
S. Kneip
Affiliation:
Blackett Laboratory, Imperial College London, London, UK
K. Markey
Affiliation:
Department of Physics and Astronomy, Queens University Belfast, Belfast, UK
S.R. Nagel
Affiliation:
Blackett Laboratory, Imperial College London, London, UK
L. Willingale
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan
P. McKenna
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, UK
D. Neely
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory. Chilton, Didcot, Didcot, UK
Z. Najmudin
Affiliation:
Blackett Laboratory, Imperial College London, London, UK
K. Krushelnick
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan
P.A. Norreys
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory. Chilton, Didcot, Didcot, UK
M. Zepf*
Affiliation:
Department of Physics and Astronomy, Queens University Belfast, Belfast, UK
*
Address correspondence and reprint requests to: Matthew Zepf, Department of Physics and Astronomy, Queens University Belfast, Belfast BT7 1NN, UK. E-mail: m.zepf@qub.ac.uk

Abstract

As the state of the art for high power laser systems increases from terawatt to petawatt level and beyond, a crucial parameter for routinely monitoring high intensity performance is laser spot size on a solid target during an intense interaction in the tight focus regime (<10 µm). Here we present a novel, simple technique for characterizing the spatial profile of such a laser focal spot by imaging the interaction region in third harmonic order (3ωlaser). Nearly linear intensity dependence of 3ωlaser generation for interactions >1019 Wcm−2 is demonstrated experimentally and shown to provide the basis for an effective focus diagnostic. Importantly, this technique is also shown to allow in-situ diagnosis of focal spot quality achieved after reflection from a double plasma mirror setup for very intense high contrast interactions (>1020 Wcm−2) an important application for the field of high laser contrast interaction science.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An der Brugge, D. & Pukhov, A. (2007). Propagation of relativistic surface harmonics radiation in free space. Phys. Plasmas 14, 093104.CrossRefGoogle Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.CrossRefGoogle ScholarPubMed
Carman, R.L., Forslund, D.W. & Kindel, J.M. (1981). Visible harmonics emission as a way of measuring profile steepening. Phys. Rev. Lett. 46, 29.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.L., Collier, R.L., Fell, B., Frackiewicz, A.J., Hancock, S., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C.J., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2004) Vulcan Petawatt — An ultra-high-intensity interaction facility. Nucl. Fusion 44, S239S246.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.Google Scholar
Dromey, B., Kar, S., Zepf, M. & Foster, P. (2004). The plasma mirror - A subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Instrum. 75, 645648.CrossRefGoogle Scholar
Dromey, B., Zepf, M., Gopal, A., Lancaster, K., Wei, M.S., Krushelnick, K., Tatarakis, M., Vakakis, N., Moustaizis, S., Kodama, R., Tampo, M., Stoeckl, C., Clarke, R., Habara, H., Neely, D., Karsch, S. & Norreys, P. (2006). High harmonic generation in the relativistic limit. Nat. Phys. 2, 456458.CrossRefGoogle Scholar
Dromey, B., Kar, S., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kneip, S., Markey, K., Nagel, S.R., Simpson, P.T., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2007). Bright multi-KeV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001.CrossRefGoogle ScholarPubMed
Dromey, B., Adams, D., Hörlein, R., Nomura, Y., Rykovanov, S.G., Carroll, D.C., Foster, P.S., Kar, S., Markey, K., McKenna, P., Neely, D., Geissler, M., Tsakiris, G.D. & Zepf, M. (2008). Diffraction limited performance and focusing of high harmonics from relativistic plasmas. Nat. Phys. doi:10.1038/nphy1158.Google Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 25, 211218.CrossRefGoogle Scholar
Hörlein, R., Dromey, B., Adams, D., Nomura, Y., Kar, S., Markey, K., Foster, P., Neely, D.Krausz, F, Tsakiris, G.D. & Zepf, M. (2008). High contrast plasma mirror: spatial filtering and second harmonic generation at 1019 W cm−2. J. Phys. 10, 083002.Google Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Lévy, A., Ceccotti, T., D'Oliveira, P., Réau, F., Perdrix, M., Quéré, F., Monot, P., Bougeard, M., Lagadec, H. & Martin, P. (2007). Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt. Lett. 3, 310312.CrossRefGoogle Scholar
Lichters, R. & Meyer-ter-Vehn, J. (1997). Multiphoton processes. Instit. Phys. Conf. 154, 221.Google Scholar
Quéré, F., Thaury, C., Monot, P., Dobosz, S., Martin, P., Geindre, J-P. & Audebert, P. (2006). Coherent Wake Emission of High-Order Harmonics from Overdense Plasmas, Phys. Rev. Lett., 96, 125004.CrossRefGoogle ScholarPubMed
Quéré, F., Thaury, C., Geindre, J-P., Bonnaud, G., Monot, P. & Martin, P.H. (2008). Phase properties of laser high-order harmonics generated on plasma mirrors. Phys. Rev. Lett. 100, 095004.CrossRefGoogle ScholarPubMed
Rykovanov, S., Geissler, M., Meyer-ter-Vehn, J. & Tsakiris, G.D. (2008). Intense single attosecond pulses from surface harmonics using the polarization gating technique. J. Phys. 10, 025025.Google Scholar
Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. J. Phys. 8, 19.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra intense light pulses. Phys. Rev. Lett. 69, 1383.CrossRefGoogle Scholar