Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T21:12:59.231Z Has data issue: false hasContentIssue false

Equation-of-state studies using a 10-Hz Nd:YAG laser oscillator

Published online by Cambridge University Press:  25 March 2004

M. SHUKLA
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Center, Mumbai, India
A. UPADHYAY
Affiliation:
Laser Plasma Division, Center for Advanced Technology, Indore, India
V.K. SENECHA
Affiliation:
Laser Plasma Division, Center for Advanced Technology, Indore, India
P. KHARE
Affiliation:
Laser Plasma Division, Center for Advanced Technology, Indore, India
S. BANDYAOPADHYAY
Affiliation:
Laser Plasma Division, Center for Advanced Technology, Indore, India
V.N. RAI
Affiliation:
Laser Plasma Division, Center for Advanced Technology, Indore, India
C.P. NAVATHE
Affiliation:
Laser Plasma Division, Center for Advanced Technology, Indore, India
H.C. PANT
Affiliation:
Hon. Visitor, High Pressure Physics Division, Bhabha Atomic Research Center, Mumbai, India
M. KHAN
Affiliation:
Center for Plasma Studies, Jadavpur University, Kolkata, India
B.K. GODWAL
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Center, Mumbai, India

Abstract

A commercial mode locked cavity dumped Nd:YAG dye laser operating at 10 Hz repetition rate is modified to produce a high contrast (>5000:1) single laser pulse while maintaining the energy stability and high beam quality. A trigger generator biases the cavity dumping photodiode, which is triggered externally by a pulse from the microprocessor-based control unit controlling a ∼2 J/200 ps laser chain. In the laser chain, the high contrast (>5000:1) is achieved by an external pulse selector based on single Pockel's cell to select a single laser pulse of high contrast, which is a prerequisite for experimental study of the equation of state. Laser-induced shock velocity measurement in thin aluminum, gold on aluminum, and copper on aluminum foil targets using this modified laser system are also presented. The equation of state of Al, Au, and Cu obtained using an impedance matching technique are in agreement with the reported results of SESAME and simulation results.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altshuler, L.V. et al. (1962). Sov. Phys. JETP 11, 573.
Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Bondenne, J.M., Grandjouan, N., Atzeni, S. & Temporal, M. (1996). Optical smoothing for shock wave generation: Application to the measurement of equation of state. Laser Part. Beams 14, 211223.Google Scholar
Bennet, B.T. et al. (1978). LANL Report LA-7130, Los Alamos, NM: Los Alamos National Laboratory.
Benuzzi, A., Lower, T., Koenig, M., Batani, D., Beretta, D., Bossi, S., Hall, T. & Krishnan, J. (1996a). High quality shock generation and equation of state studies in the multi megabar regime. Advances in Laser Interaction with Matter and Inertial Fusion (Velarde, G., Martinez-Val, J.M., Minquez, E. & Perlado, J.M., Eds.), pp. 336339. Singapore: World Scientific.
Benuzzi, A., Lower, T., Koenig, M., Faral, B., Batani, D., Beretta, D., Dawson, C. & Kepler, D. (1996b). Indirect and direct laser driven shock waves and application to copper equation of state measurements in 10–40 Mbar pressure range. Phys. Rev. E 54, 21622165.Google Scholar
Benuzzi, A., Koenig, M., Faral, B., Krishnan, J., Pisani, F., Batani, D., Bossi, S., Beretta, D., Hall, T.A., Ellwi, S., Huller, S., Honrubia, J.J. & Grandjouan, N. (1998). Preheating study of reflectivity measurement in laser driven shocks. Phys. Plasmas 5(6), 24102420.Google Scholar
Benuzzi, A., Koenig, M., Huser, G., Faral, B., Batani, D., Henry, E., Tomasini, M., Hall, T.A., Boustie, M., De Resslguier, Th., Halloum, M., Guyot, F., Andrault, D., Charpin, Th. (2002). Absolute equation of state measurements of iron using laser driven shocks. Phys. Plasmas, 9, 24662469.Google Scholar
Cauble, R., Phillion, D.W., Hoover, T.J., Holems, N.C., Kilkenn, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils. Phys. Rev. Lett. 72, 21022105.Google Scholar
Celliers, P.M., Collins, G.W., Da Silva, L.B., Gold, D.M., Cauble, R., Wallace, R.J., Foord M.E., &Hammel, B.A. (2000). Shock induced transformations of liquid deuterium into a metallic fluids. Phys. Rev. Lett. 84, 55645567.Google Scholar
Chidambaram, R. (1996). Material response under static and dynamic high pressures. J. Indian Inst. Sci. 76, 437463.Google Scholar
Evans, A.M., Graham, P., Rothmann, S.D. & Thomas, B.R. (1996a). Progress in shock Hugoniot measurements using the one TW Helen laser. Advances in Laser Interaction with Matter and Inertial Fusion (Velarde, G., Martinez-Val, J.M., Minquez, E. & Perlado, J.M., Eds.), pp. 344347.
Evans, A.M., Freeman, N.J., Graham, P., Hossfield, C.J., Rothmann, S.D., Thomas, B.R. & Tyrrell, A.J. (1996b). Hugoniot equation of state measurements at Mbar pressure. Laser Part. Beams 14, 113123.Google Scholar
Gu, Y., Fu, S., Jiang, W.V., Yu, S., Ni, Y. & Wang, S. (1996). Equation of state studies at SILP by laser driven shock waves. Laser Part. Beams 14, 157169.Google Scholar
Hammel, B.A., Griswold, G., Landen, O.L., Perry, T.S., Remington, B.A., Miller, P.L., Peyser, T.A. & Kilkenny, J.D. (1993). Phys. Fluids B 5, 22592264.
Honrubia, J.J., Dezulian, R., Batani, D., Bossi, S., Koenig, M., Benuzzi, A. & Grandjouan, N. (1998). Simulation of preheating effects in shock wave experiments. Laser Part. Beams 16, 1320.Google Scholar
Jones, A.H., Isbell, W.H. & Maiden, J. (1966). J. Appl. Phys. 37, 34933497.
Koechner, W. (1992). Solid State Laser Engineering, Springer Series in Optical Sciences, Vol. 1. Berlin: Springer.
Koenig, M., Faral, B., Bondenne, J.M., Batani, D., Benuzzi, A., Bossi, S., Remond, C., Perrine, J.P., Temporal, M. & Atzeni, S. (1995). Relative consistency of equation of state by laser driven shock waves. Phys. Rev. Lett. 74, 22602263.Google Scholar
Kormer, S.B. et al. (1962). Sov. Phys. JETP 15, 477.
Lindl, J. (1995). Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Lower, Th., Sigel, R., Eidmann, K., Foldes, I.B., Huller, S., Massen, J., Tsakaris, G.D., Witkowski, S., Preuss, W., Nishinura, H., Shiraga, H., Kato, Y., Nakai, S. & Endo, T. (1994). Uniform shock waves in solids driven by laser generated thermal radiation. Phys. Rev. Lett. 72, 31863189.Google Scholar
Marsh, S.P. (Ed.). (1980). LASL Shock Hugoniot Data, Los Angeles: University of California Press.
Mitchell, A.C., Nellis, W.J., Moriarty, J.A., Heinle, R.A., Holmes, N.C., Tipton, R.E. & Repp, G.W. (1991). Equation of state of Al, Cu, Mo and Pu at shock pressures up to 2.4 Tpa (24 Mbar). J. Appl. Phys. 69, 29812986.Google Scholar
Navathe, C.P., Ansari, M.S., Upadhyay, J., Sreedhar, N., Chandra, R., Kumbhare, S.R., Chakera, J.A. & Gupta, P.D. (1996). Rev. Sci. Instrum. 67, 24592462.
Nellis, W.J., Moriarty, J.A., Mitchell, A.C., Ross, M., Dandrea, R.G., Ashcroft, N.W., Holmes, N.C. & Gathers, G.R. (1988). Metal physics at ultrahigh pressure: Al, Cu and lead as prototypes. Phys. Rev. Lett. 60, 14141417.Google Scholar
Ng, A., Parfeniuk, D. & Da Silva, L. (1985). Hugoniot measurements for laser generated shock waves in aluminum. Phys. Rev. Lett. 54, 26042607.Google Scholar
Pant, H.C., Shukla, M., Senecha, V.K., Bandyopadhyay, S., Rai, V.N., Khare, P., Bhat, R.K., Godwal, B.K. & Gupta, N.K. (2002). Equation of state studies using laser driven shock wave propagation through layered foil targets. Curr. Sci. 82, 149157.Google Scholar
Rai, V.N., Shukla, M., Pant, H.C. & Bhawalkar, D.D. (1995). Development of picosecond time resolution optical and x-ray streak cameras. Sadhana 20, 937954.Google Scholar
Ramis, R., Schmalz, R. & Meyer-ter-vehn, J. (1988). Multi- A computer code for one-dimensional radiation hydrodynamics. Comp. Phys. Commun. 49, 475505.Google Scholar
Rothman, S.D., Evans, A.M., Harsfield, C.J., Graham, P. & Thomes, B.R. (2002). Impedance match equation of state experiments using indirectly laser driven multimegabar shocks. Phys. Plasmas, 9, 17211733.Google Scholar
Sikka, S.K. et al. (1997). High Pressure Shock Compression of Condensed Matter (Davison and Sahinpoor, Eds), p. 1. New York: Springer Verlag.
Trainor, R.J., Shaner, J.W., Auerbach, J.M. & Holmes, N.C. (1979). Ultra high pressure laser driven shock wave experiments in aluminum. Phys. Rev. Lett. 42, 11541157.Google Scholar
Trunin, R.F. et al. (1969). Sov. Phys. JETP 29, 630631.
Veeser, L.R., Solem, J.C. & Lieber, A.J. (1979). Impedance match experiments using laser driven shock waves. Appl. Phys. Lett. 35, 761763.Google Scholar
Vora, H.S., Nakhe, S.V., Sarangpani, K.K., Saxena, P., Shirke, N.D. & Bhatnagar, R. (1996). Promise- A software for profile measurement of image size and edge enhancement. CAT Internal Report. CAT/1996/10, Indore, India: Centre for Advanced Technology.