Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T19:01:26.114Z Has data issue: false hasContentIssue false

Sectional-hyperbolic systems

Published online by Cambridge University Press:  01 October 2008

R. METZGER
Affiliation:
Instituto de Matemática y Ciencias Afines IMCA, Jr. Ancash 536. Lima 1., Casa de las Trece Monedas, Perú (email: metzger@uni.edu.pe)
C. MORALES
Affiliation:
Instituto de Matematica, Universidade Federal do Rio de Janeiro, PO Box 68530, 21945-970 Rio de Janeiro, Brazil (email: morales@impa.br)

Abstract

We introduce a class of vector fields on n-manifolds containing the hyperbolic systems, the singular-hyperbolic systems on 3-manifolds, the multidimensional Lorenz attractors and the robust transitive singular sets in Li et al [Robust transitive singular sets via approach of an extended linear Poincaré flow. Discrete Contin. Dyn. Syst.13(2) (2005), 239–269]. We prove that the closed orbits of a system in such a class are hyperbolic in a persistent way, a property which is false for higher-dimensional singular-hyperbolic systems. We also prove that the singularities in the robust transitive sets in Li et al are similar to those in the multidimensional Lorenz attractor. Our results will give a partial negative answer to Problem 9.26 in Bonatti et al [Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective (Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III). Springer, Berlin, 2005].

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Araujo, V., Pacifico, M. J., Pujals, E. R. and Viana, M.. Singular-hyperbolic attractors are chaotic. Trans. Amer. Math. Soc. in press.Google Scholar
[2]Afraimovich, V. S. and Hsu, S.-B.. Lectures on Chaotic Dynamical Systems (AMS/IP Studies in Advanced Mathematics, 28). American Mathematical Society, Providence, RI, 2003.CrossRefGoogle Scholar
[3]Bautista, S. and Morales, C.. Existence of periodic orbits for singular-hyperbolic sets. Mosc. Math. J. 6(2) (2006), 265297.CrossRefGoogle Scholar
[4]Beltran, J., Metzger, R. and Morales, C.. Ergodic properties of sectional-hyperbolic attractors, in preparation.Google Scholar
[5]Bonatti, C., Diaz, L. and Viana, M.. Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective (Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III). Springer, Berlin, 2005.Google Scholar
[6]Bonatti, C., Gourmelon, N. and Vivier, T.. Perturbation of the derivative along periodic orbits. Ergod. Th. & Dynam. Sys. 26(5) (2006), 13071337.CrossRefGoogle Scholar
[7]Bonatti, Ch., Pumariño, A. and Viana, M.. Lorenz attractors with arbitrary expanding dimension. C. R. Acad. Sci. Paris Sér. I Math. 325(8) (1997), 883888.CrossRefGoogle Scholar
[8]Fowler, A. C. and Sparrow, C. T.. Bifocal homoclinic orbits in four dimensions. Nonlinearity 4(4) (1991), 11591182.CrossRefGoogle Scholar
[9]Hayashi, S.. Connecting invariant manifolds and the solution of the C 1 stability and Ω-stability conjectures for flows. Ann. of Math. (2) 145(1) (1997), 81137.CrossRefGoogle Scholar
[10]Hirsch, M., Pugh, C. and Shub, M.. Invariant Manifolds (Lecture Notes in Mathematics, 583). Springer, Berlin, 1977.CrossRefGoogle Scholar
[11]Li, M., Gan, S. and Wen, L.. Robust transitive singular sets via approach of an extended linear Poincaré flow. Discrete Contin. Dyn. Syst. 13(2) (2005), 239269.CrossRefGoogle Scholar
[12]Milnor, J. W. and Stasheff, J. D.. Characteristic Classes (Annals of Mathematics Studies, 76). Princeton University Press, Princeton, NJ, 1974.CrossRefGoogle Scholar
[13]Morales, C. A., Pacifico, M. J. and Pujals, E. R.. On C 1 robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Paris Ser. I Math. 326(1) (1998), 8186.CrossRefGoogle Scholar
[14]Morales, C. A., Pacifico, M. J. and Pujals, E. R.. Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. of Math. (2) 160(2) (2004), 375432.CrossRefGoogle Scholar
[15]Morales, C. A., Pacifico, M. J. and Pujals, E. R.. Singular hyperbolic systems. Proc. Amer. Math. Soc. 127(11) (1999), 33933401.CrossRefGoogle Scholar
[16]Shilnikov, L. P. and Turaev, D. V.. An example of a wild strange attractor. Mat. Sb. 189(2) (1998), 137160 (in Russian with Russian summary). Engl. Transl. Sb. Math. 189(1–2) (1998), 291–314.Google Scholar
[17]Shilnikov, L. P.. Existence of a countable set of periodic motions in a four-dimensional space in an extended neighborhood of a saddle-focus. Dokl. Akad. Nauk SSSR 172 (1967), 5457 (in Russian).Google Scholar
[18]Wiggins, S.. Global Bifurcations and Chaos. Analytical Methods (Applied Mathematical Sciences, 73). Springer, New York, 1988.CrossRefGoogle Scholar