Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T11:09:08.078Z Has data issue: false hasContentIssue false

Association of the DTNBP1 genotype with cognition and personality traits in healthy subjects

Published online by Cambridge University Press:  01 April 2009

T. Kircher*
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany
V. Markov
Affiliation:
Department of Psychiatry and Psychotherapy, RWTH Aachen University, Germany
A. Krug
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany
T. Eggermann
Affiliation:
Institute of Human Genetics, RWTH Aachen University, Germany
K. Zerres
Affiliation:
Institute of Human Genetics, RWTH Aachen University, Germany
M. M. Nöthen
Affiliation:
Department of Genomics, Life and Brain Centre, University of Bonn, Germany
M. H. Skowronek
Affiliation:
Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
M. Rietschel
Affiliation:
Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
*
*Address for correspondence: Dr T. Kircher, Department of Psychiatry und Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, D-35039 Marburg, Germany. (Email: psychiat@med.uni-marburg.de)

Abstract

Background

Schizophrenia is a complex disorder with a high heritability. Family members have an increased risk not only for schizophrenia per se but also for schizophrenia spectrum disorders. Impairment of neuropsychological functions found in schizophrenia patients are also frequently observed in their relatives. The dystrobrevin-binding protein 1 (DTNBP1) gene located at chromosome 6p22.3 is one of the most often replicated vulnerability genes for schizophrenia. In addition, this gene has been shown to modulate general cognitive abilities both in healthy subjects and in patients with schizophrenia.

Method

In a sample of 521 healthy subjects we investigated an association between the DTNBP1 genotype [single nucleotide polymorphism (SNP) rs1018381], personality traits [using the NEO Five-Factor Inventory (NEO-FFI) and the Schizotypal Personality Questionnaire – Brief Version (SPQ-B)] and cognitive function (estimated IQ, verbal fluency, attention, working memory and executive function).

Results

Significantly lower scores on the SPQ-B (p=0.0005) and the Interpersonal Deficit subscale (p=0.0005) in carriers of the A-risk allele were detected. There were no differences in any of the cognitive variables between groups.

Conclusions

The results indicate that genetic variation of the DTNBP1 genotype might exert gene-specific modulating effects on schizophrenia endophenotypes at the population level.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angst, J, Clayton, P (1986). Premorbid personality of depressive, bipolar, and schizophrenic patients with special reference to suicidal issues. Comprehensive Psychiatry 27, 511532.CrossRefGoogle ScholarPubMed
Avramopoulos, D, Stefanis, NC, Hantoumi, I, Smyrnis, N, Evdokimidis, I, Stefanis, CN (2002). Higher scores of self reported schizotypy in healthy young males carrying the COMT high activity allele. Molecular Psychiatry 7, 706711.CrossRefGoogle ScholarPubMed
Bagby, RM, Bindseil, KD, Schuller, DR, Rector, NA, Young, LT, Cooke, RG, Seeman, MV, McCay, EA, Joffe, R T (1997). Relationship between the five-factor model of personality and unipolar, bipolar and schizophrenic patients. Psychiatry Research 70, 8394.CrossRefGoogle ScholarPubMed
Benson, MA, Newey, SE, Martin-Rendon, E, Hawkes, R, Blake, DJ (2001). Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. Journal of Biological Chemistry 276, 2423224241.CrossRefGoogle ScholarPubMed
Berenbaum, H, Fujita, F (1994). Schizophrenia and personality: exploring the boundaries and connections between vulnerability and outcome. Journal of Abnormal Psychology 103, 148158.CrossRefGoogle ScholarPubMed
Blake, DJ, Hawkes, R, Benson, MA, Beesley, PW (1999). Different dystrophin-like complexes are expressed in neurons and glia. Journal of Cell Biology 147, 645658.CrossRefGoogle ScholarPubMed
Borkenau, P, Ostendorf, F (1993). The NEO Five-Factor Inventory (NEO-FFI) [NEO Fünf-Faktoren Inventar]. Hogrefe: Göttingen.Google Scholar
Brickenkamp, R (2002). The d2 Test of Attention [Der Aufmerksamkeits-Belastungstest d2]. Hogrefe: Göttingen.Google Scholar
Burdick, KE, Goldberg, TE, Funke, B, Bates, JA, Lencz, T, Kucherlapati, R, Malhotra, AK (2007). DTNBP1 genotype influences cognitive decline in schizophrenia. Schizophrenia Research 89, 169172.CrossRefGoogle ScholarPubMed
Burdick, KE, Hodgkinson, CA, Szeszko, PR, Lencz, T, Ekholm, JM, Kane, JM, Goldman, D, Malhotra, AK (2005). DISC1 and neurocognitive function in schizophrenia. Neuroreport 16, 13991402.CrossRefGoogle ScholarPubMed
Burdick, KE, Lencz, T, Funke, B, Finn, CT, Szeszko, PR, Kane, JM, Kucherlapati, R, Malhotra, AK (2006). Genetic variation in DTNBP1 influences general cognitive ability. Human Molecular Genetics 15, 15631568.CrossRefGoogle ScholarPubMed
Camisa, KM, Bockbrader, MA, Lysaker, P, Rae, LL, Brenner, CA, O'Donnell, BF (2005). Personality traits in schizophrenia and related personality disorders. Psychiatry Research 133, 2333.CrossRefGoogle ScholarPubMed
Costa, PT, McCrae, RR (1992). NEO-PI-R: Professional Manual. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI). Psychological Assessment Resources: Odessa, FL.Google Scholar
Costa, PT Jr., McCrae, RR (1995). Domains and facets: hierarchical personality assessment using the revised NEO personality inventory. Journal of Personality Assessment 64, 2150.CrossRefGoogle ScholarPubMed
Coyle, JT (2006). Glutamate and schizophrenia: beyond the dopamine hypothesis. Cellular and Molecular Neurobiology 26, 365384.CrossRefGoogle ScholarPubMed
Datta, SR, McQuillin, A, Puri, V, Choudhury, K, Thirumalai, S, Lawrence, J, Pimm, J, Bass, N, Lamb, G, Moorey, H, Morgan, J, Punukollu, B, Kandasami, G, Kirwin, S, Sule, A, Quested, D, Curtis, D, Gurling, HM (2007). Failure to confirm allelic and haplotypic association between markers at the chromosome 6p22.3 dystrobrevin-binding protein 1 (DTNBP1) locus and schizophrenia. Behavioral and Brain Functions 3, 50.CrossRefGoogle ScholarPubMed
Daum, I, Graber, S, Schugens, MM, Mayes, AR (1996). Memory dysfunction of the frontal type in normal ageing. Neuroreport 7, 26252628.CrossRefGoogle ScholarPubMed
DeRosse, P, Funke, B, Burdick, KE, Lencz, T, Ekholm, JM, Kane, JM, Kucherlapati, R, Malhotra, AK (2006). Dysbindin genotype and negative symptoms in schizophrenia. American Journal of Psychiatry 163, 532534.CrossRefGoogle ScholarPubMed
Digman, JM (1990). Personality structure: emergence of the five-factor model. Annual Review of Psychology 41, 417440.CrossRefGoogle Scholar
Donohoe, G, Morris, DW, Clarke, S, McGhee, KA, Schwaiger, S, Nangle, JM, Garavan, H, Robertson, IH, Gill, M, Corvin, A (2007). Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: a preliminary study. Neuropsychologia 45, 454458.CrossRefGoogle ScholarPubMed
Fanous, AH, Neale, MC, Gardner, CO, Webb, BT, Straub, RE, O'Neill, FA, Walsh, D, Riley, BP & Kendler, KS (2007). Significant correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. Molecular Psychiatry 12, 958965.CrossRefGoogle ScholarPubMed
Fanous, AH, van den Oord, EJ, Riley, BP, Aggen, SH, Neale, MC, O'Neill, FA, Walsh, D, Kendler, KS (2005). Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. American Journal of Psychiatry 162, 18241832.CrossRefGoogle ScholarPubMed
Funke, B, Finn, CT, Plocik, AM, Lake, S, DeRosse, P, Kane, JM, Kucherlapati, R, Malhotra, AK (2004). Association of the DTNBP1 locus with schizophrenia in a U.S. population. American Journal of Human Genetics 75, 891898.CrossRefGoogle Scholar
Gold, JM, Carpenter, C, Randolph, C, Goldberg, TE, Weinberger, DR (1997). Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Archives of General Psychiatry 54, 159165.CrossRefGoogle ScholarPubMed
Goldberg, TE, Straub, RE, Callicott, JH, Hariri, A, Mattay, VS, Bigelow, L, Coppola, R, Egan, MF, Weinberger, DR (2006). The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 31, 20222032.CrossRefGoogle ScholarPubMed
Hall, J, Whalley, HC, Job, DE, Baig, BJ, McIntosh, AM, Evans, KL, Thomson, PA, Porteous, DJ, Cunningham-Owens, DG, Johnstone, EC, Lawrie, SM (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience 9, 14771478.CrossRefGoogle ScholarPubMed
Hallmayer, JF, Kalaydjieva, L, Badcock, J, Dragovic, M, Howell, S, Michie, PT, Rock, D, Vile, D, Williams, R, Corder, EH, Hollingsworth, K, Jablensky, A (2005). Genetic evidence for a distinct subtype of schizophrenia characterized by pervasive cognitive deficit. American Journal of Human Genetics 77, 468476.CrossRefGoogle ScholarPubMed
Harrison, PJ, Weinberger, DR (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry 10, 4068.CrossRefGoogle ScholarPubMed
Härting, C, Markowitsch, H, Neufeld, H, Calabrese, P, Deisinger, K (2002). The Wechsler Memory Scale – Revised Edition [Wechlser Gedächtnis Test – Revidierte Fassung]. Hogrefe: Göttingen.Google Scholar
Jang, KL, Livesley, WJ, Vernon, PA (1996). Heritability of the big five personality dimensions and their facets: a twin study. Journal of Personality 64, 577591.CrossRefGoogle ScholarPubMed
Kendler, KS, Gruenberg, AM, Strauss, JS (1981). An independent analysis of the Copenhagen sample of the Danish adoption study of schizophrenia. II. The relationship between schizotypal personality disorder and schizophrenia. Archives of General Psychiatry 38, 982984.CrossRefGoogle Scholar
Kendler, KS, McGuire, M, Gruenberg, AM, O'Hare, A, Spellman, M, Walsh, D (1993). The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Archives of General Psychiatry 50, 527540.CrossRefGoogle Scholar
Kirov, G, Ivanov, D, Williams, NM, Preece, A, Nikolov, I, Milev, R, Koleva, S, Dimitrova, A, Toncheva, D, O'Donovan, MC, Owen, MJ (2004). Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent–offspring trios from Bulgaria. Biological Psychiatry 55, 971975.CrossRefGoogle ScholarPubMed
Krabbendam, L, Janssen, I, Bak, M, Bijl, RV, de Graaf, R, van Os, J (2002). Neuroticism and low self-esteem as risk factors for psychosis. Social Psychiatry and Psychiatric Epidemiology 37, 16.CrossRefGoogle ScholarPubMed
Lehrl, S (2005). Multiple-choice Vocabulary Intelligence Test [Der Mehrfachwahl-Wortschatz-Intelligenztest]. Hogrefe: Göttingen.Google Scholar
Li, D, He, L (2007). Association study between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia: a meta-analysis. Schizophrenia Research 96, 112118.CrossRefGoogle ScholarPubMed
Lin, HF, Liu, YL, Liu, CM, Hung, SI, Hwu, HG, Chen, WJ (2005). Neuregulin 1 gene and variations in perceptual aberration of schizotypal personality in adolescents. Psychological Medicine 35, 15891598.CrossRefGoogle ScholarPubMed
Maier, W, Minges, J, Lichtermann, D, Heun, R, Franke, P (1994). Personality variations in healthy relatives of schizophrenics. Schizophrenia Research 12, 8188.CrossRefGoogle ScholarPubMed
Mutsuddi, M, Morris, DW, Waggoner, SG, Daly, MJ, Scolnick, EM, Sklar, P (2006). Analysis of high-resolution HapMap of DTNBP1 (dysbindin) suggests no consistency between reported common variant associations and schizophrenia. American Journal of Human Genetics 79, 903909.CrossRefGoogle ScholarPubMed
Numakawa, T, Yagasaki, Y, Ishimoto, T, Okada, T, Suzuki, T, Iwata, N, Ozaki, N, Taguchi, T, Tatsumi, M, Kamijima, K, Straub, RE, Weinberger, DR, Kunugi, H, Hashimoto, R (2004). Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics 13, 26992708.CrossRefGoogle ScholarPubMed
O'Tuathaigh, CM, Babovic, D, O'Meara, G, Clifford, JJ, Croke, DT, Waddington, JL (2007). Susceptibility genes for schizophrenia: characterization of mutant mouse models at the level of phenotypic behavior. Neuroscience and Biobehavioral Reviews 31, 6078.CrossRefGoogle Scholar
Owen, MJ, O'Donovan, MC, Gottesman, II (2002). Schizophrenia. In Psychiatric Genetics and Genomics (ed. McGuffin, P., Owen, M. J. and Gottesman, I. I.), pp. 247266. Oxford Medical Publishers: Oxford.CrossRefGoogle Scholar
Owen, MJ, Williams, NM, O'Donovan, MC (2004 a). Dysbindin-1 and schizophrenia: from genetics to neuropathology. Journal of Clinical Investigation 113, 12551257.CrossRefGoogle ScholarPubMed
Owen, MJ, Williams, NM, O'Donovan, MC (2004 b). The molecular genetics of schizophrenia: new findings promise new insights. Molecular Psychiatry 9, 1427.CrossRefGoogle ScholarPubMed
Posthuma, D, Luciano, M, Geus, EJ, Wright, MJ, Slagboom, PE, Montgomery, GW, Boomsma, DI, Martin, NG (2005). A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. American Journal of Human Genetics 77, 318326.CrossRefGoogle ScholarPubMed
Raine, A, Benishay, D (1995). The SPQ-B: a brief screening instrument for schizotypal personality disorder. Journal of Personality Disorder 9, 346355.CrossRefGoogle Scholar
Reitan, RM, Wolfson, D (1985). The Halstead–Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. Neuropsychology Press: Tucson, AZ.Google Scholar
Schwab, SG, Knapp, M, Mondabon, S, Hallmayer, J, Borrmann-Hassenbach, M, Albus, M, Lerer, B, Rietschel, M, Trixler, M, Maier, W, Wildenauer, DB (2003). Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. American Journal of Human Genetics 72, 185190.CrossRefGoogle Scholar
Smyrnis, N, Avramopoulos, D, Evdokimidis, I, Stefanis, CN, Tsekou, H, Stefanis, NC (2007). Effect of schizotypy on cognitive performance and its tuning by COMT val158met genotype variations in a large population of young men. Biological Psychiatry 61, 845853.CrossRefGoogle Scholar
Spitzer, RL, Endicott, J, Gibbon, M (1979). Crossing the border into borderline personality and borderline schizophrenia. The development of criteria. Archives of General Psychiatry 36, 1724.CrossRefGoogle ScholarPubMed
Stefanis, NC, Trikalinos, TA, Avramopoulos, D, Smyrnis, N, Evdokimidis, I, Ntzani, EE, Ioannidis, JP, Stefanis, CN (2007). Impact of schizophrenia candidate genes on schizotypy and cognitive endophenotypes at the population level. Biological Psychiatry 62, 784792.CrossRefGoogle ScholarPubMed
Stefanis, NC, Van Os, J, Avramopoulos, D, Smyrnis, N, Evdokimidis, I, Hantoumi, I, Stefanis, CN (2004). Variation in catechol-O-methyltransferase val158met genotype associated with schizotypy but not cognition: a population study in 543 young men. Biological Psychiatry 56, 510515.CrossRefGoogle Scholar
Straub, RE, Jiang, Y, MacLean, CJ, Ma, Y, Webb, BT, Myakishev, MV, Harris-Kerr, C, Wormley, B, Sadek, H, Kadambi, B, Cesare, AJ, Gibberman, A, Wang, X, O'Neill, FA, Walsh, D, Kendler, KS (2002). Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. American Journal of Human Genetics 71, 337348.CrossRefGoogle ScholarPubMed
Strom, TM, Wienker, TF (2005). Case–control studies. Tests for deviation from Hardy–Weinberg equilibrium and tests for association (http://ihg2.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl).Google Scholar
Talbot, K, Eidem, WL, Tinsley, CL, Benson, MA, Thompson, EW, Smith, RJ, Hahn, CG, Siegel, SJ, Trojanowski, JQ, Gur, RE, Blake, DJ, Arnold, SE (2004). Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. Journal of Clinical Investigation 113, 13531363.CrossRefGoogle ScholarPubMed
Tang, JX, Zhou, J, Fan, JB, Li, XW, Shi, YY, Gu, NF, Feng, GY, Xing, YL, Shi, JG, He, L (2003). Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Molecular Psychiatry 8, 717718.CrossRefGoogle ScholarPubMed
Torgersen, S, Edvardsen, J, Oien, PA, Onstad, S, Skre, I, Lygren, S, Kringlen, E (2002). Schizotypal personality disorder inside and outside the schizophrenic spectrum. Schizophrenia Research 54, 3338.CrossRefGoogle ScholarPubMed
Tosato, S, Ruggeri, M, Bonetto, C, Bertani, M, Marrella, G, Lasalvia, A, Cristofalo, D, Aprili, G, Tansella, M, Dazzan, P, Diforti, M, Murray, RM, Collier, DA (2007). Association study of dysbindin gene with clinical and outcome measures in a representative cohort of Italian schizophrenic patients. Journal of Medical Genetics. Part B, Neuropsychiatric Genetics 144B, 647659.CrossRefGoogle Scholar
Van Den Bogaert, A, Schumacher, J, Schulze, TG, Otte, AC, Ohlraun, S, Kovalenko, S, Becker, T, Freudenberg, J, Jonsson, EG, Mattila-Evenden, M, Sedvall, GC, Czerski, PM, Kapelski, P, Hauser, J, Maier, W, Rietschel, M, Propping, P, Nothen, MM, Cichon, S (2003). The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. American Journal of Human Genetics 73, 14381443.CrossRefGoogle ScholarPubMed
van den Oord, EJ, Sullivan, PF, Jiang, Y, Walsh, D, O'Neill, FA, Kendler, KS, Riley, BP (2003). Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Molecular Psychiatry 8, 499510.CrossRefGoogle ScholarPubMed
Wechsler, D (1997). Wechsler Memory Scale: Administration and Scoring Manual. The Psychological Corporation/Harcourt Brace & Co.: San Antonio.Google Scholar
Weickert, CS, Straub, RE, McClintock, BW, Matsumoto, M, Hashimoto, R, Hyde, TM, Herman, MM, Weinberger, DR, Kleinman, JE (2004). Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Archives of General Psychiatry 61, 544555.CrossRefGoogle ScholarPubMed
Williams, NM, O'Donovan, MC, Owen, MJ (2005). Is the dysbindin gene (DTNBP1) a susceptibility gene for schizophrenia? Schizophrenia Bulletin 31, 800805.CrossRefGoogle ScholarPubMed
Zinkstok, JR, de Wilde, O, van Amelsvoort, TA, Tanck, MW, Baas, F, Linszen, DH (2007). Association between the DTNBP1 gene and intelligence: a case-control study in young patients with schizophrenia and related disorders and unaffected siblings. Behavioral and Brain Functions 3, 19.CrossRefGoogle ScholarPubMed