Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T15:12:35.664Z Has data issue: false hasContentIssue false

Implications of genomic imprinting for psychiatric genetics1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorials
Copyright
Copyright © Cambridge University Press 1992

References

Referemces

Baraitser, M., Patton, M., Lam, S. T. S., Brett, E. M. & Wilson, J. (1987). The Angelman (‘happy puppet’) syndrome: is it autosomal recessive? Clinical Genetics 31, 323330.CrossRefGoogle ScholarPubMed
Barlow, D. P., Stöger, R., Herrmann, B. G., Saito, K. & Schweifer, N. (1991). The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 8487.CrossRefGoogle Scholar
Barton, S. C., Surani, M. A. H. & Norris, M. C. (1984). Role of paternal and maternal genomes in mouse development. Nature 311, 374376.CrossRefGoogle ScholarPubMed
Bell, M. V., Hirst, M. C., Nakahori, Y., MacKinnon, R. N., Roche, A., Flint, T. J., Jacobs, P. A., Tommerup, N., Tranebjaerg, L., Froster-Iskenius, U., Kerr, B., Turner, G., Lindenbaum, R. H., Winter, R., Pembrey, M., Thibodeau, S. & Davies, K. E. (1991). Physical mapping across the fragile X: hypermethylation and clinical expression of the fragile X syndrome. Cell 64, 861866.CrossRefGoogle ScholarPubMed
Bird, E. D., Caro, A. J. & Pilling, J. B. (1974). A sex-related factor in the inheritance of Huntington's chorea. Annals of Human Genetics 37, 255260.CrossRefGoogle ScholarPubMed
Boehnke, M., Conneally, P. M. & Lange, K. (1983). Two models for a maternal factor in the inheritance of Huntington disease. American Journal of Human Genetics 35, 845860.Google ScholarPubMed
Böök, J. A. (1953). A genetic and neuropsychiatric investigation of a North Swedish population. Acta Genetica (Basel) 4, 1100.Google ScholarPubMed
Brown, W. T., Friedman, E., Jenkins, E. C., Brooks, J., Wisniewski, K., Raguthu, S. & French, J. H. (1982). Association of fragile X syndrome with autism. Lancet i, 100.CrossRefGoogle Scholar
Brown, W. T., Jenkins, E. C., Cohen, I. L., Fisch, G. S., Wilf-Schein, E. G., Gross, A., Waterhouse, L., Fein, D., Mason-Brothers, A. & Ritvo, E. (1986). Fragile X and autism: a multicenter survey. American Journal of Medical Genetics 23, 341352.CrossRefGoogle ScholarPubMed
Butler, M. G. (1990). Prader Willi syndrome: current understanding of cause and diagnosis. American Journal of Medical Genetics 35, 319332.CrossRefGoogle ScholarPubMed
Butler, M. G. & Palmer, C. G. (1983). Parental origin of chromosome 15 in Prader Willi syndrome. Lancet i, 12851286.CrossRefGoogle Scholar
Butler, M. G., Meaney, F. J. & Palmer, C. G. (1986). Clinical and cytogenetic survey of 39 individuals with Prader–Labhart–Willi syndrome. American Journal of Medical Genetics 23, 793809.CrossRefGoogle ScholarPubMed
Cassidy, S. B. (1987). Recurrence risk in Prader–Willi syndrome. American Journal of Medical Genetics 28, 5960.CrossRefGoogle ScholarPubMed
DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. (1991). Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849859.CrossRefGoogle ScholarPubMed
Donlon, T. A. (1988). Similar molecular deletions on chromosome 15q11.2 are encountered in both the Prader–Willi and Angelman syndromes. Human Genetics 80, 322328.CrossRefGoogle ScholarPubMed
Gottesman, I. I. & Shields, J. (1982). Schizophrenia. The Epigenetic Puzzle. Cambridge University Press: Cambridge.Google Scholar
Gustavson, K.-H., Blomquist, H. & Holmgren, G. (1986). Prevalence of fragile-X syndrome in mentally retarded boys in a Swedish county. American Journal of Medical Genetics 23, 581588.CrossRefGoogle Scholar
Hagerman, R. J., Jackson, S. W., Levitas, A., Rimland, B. & Braden, M. (1986). An analysis of autism in fifty males with the fragile X syndrome. American Journal of Medical Genetics 23, 359374.CrossRefGoogle ScholarPubMed
Hall, J. G. (1988). Review and hypotheses: somatic mosaicism: observations related to clinical genetics. American Journal of Human Genetics 43, 355363.Google ScholarPubMed
Hall, J. G. (1990). Genomic imprinting: review and relevance to human disease. American Journal of Human Genetics 46, 857873.Google Scholar
Imaizumi, K., Takada, F., Kuroki, Y., Naritomi, K., Hamabe, J. & Niikawa, N. (1990). Cytogenetic and molecular study of the Angelman syndrome. American Journal of Medical Genetics 35, 314318.CrossRefGoogle ScholarPubMed
Kaplan, L. C., Wharton, R., Elias, E., Mandell, F., Donlon, T. & Latt, S. A. (1987). Clinical heterogeneity associated with deletions in the long arm of chromosome 15: report of 3 new cases and their possible genetic significance. American Journal of Medical Genetics 28, 4553.CrossRefGoogle Scholar
Knoll, J. H. M., Nicholls, R. D., Magenis, R. E., Graham, J. M., Lalande, M. & Latt, S. A. (1989). Angelman and Prader–Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. American Journal of Medical Genetics 32, 285290.CrossRefGoogle Scholar
Knoll, J. H. M., Nicholls, R. D., Magenis, R. E., Glatt, J., Graham, J. M., Kaplan, L. & Lalande, M. (1990). Angelman syndrome: three molecular classes identified with chromosome 15q11q13-specific DNA markers. American Journal of Human Genetics 47, 149155.Google ScholarPubMed
Knoll, J. H. M., Glatt, K. A., Nicholls, R. D., Malcolm, S. & Lalande, M. (1991). Chromosome 15 uniparental disomy is not frequent in Angelman syndrome. American Journal of Human Genetics 48, 1621.Google Scholar
Labidi, F. & Cassidy, S. B. (1986). A blind prometaphase study of Prader–Willi syndrome: frequency and consistency in interpretation of del 15q. American Journal of Human Genetics 39, 452460.Google ScholarPubMed
Laird, C. D. (1987). Proposed mechanism of inheritance and expression of the human fragile-X syndrome of mental retardation. Genetics 117, 587599.CrossRefGoogle ScholarPubMed
Laird, C. D. (1990). Proposed genetic basis of Huntington's disease. Trends in Genetics 6, 242247.CrossRefGoogle ScholarPubMed
Ledbetter, D. H., Riccardi, V. M., Airhart, S. D., Strobel, R. J., Keenan, B. S. & Crawford, J. D. (1981). Deletions of chromosome 15 as a cause of the Prader Willi syndrome. New England Journal of Medicine 304, 325329.CrossRefGoogle ScholarPubMed
Linder, D., McCaw, B. K. & Hecht, F. (1975). Parthenogenetic origin of benign ovarian teratomas. New England Journal of Medicine 292, 6366.CrossRefGoogle Scholar
Magenis, R. E., Brown, M. G., Lacy, D. A., Budden, S. & LaFranchi, S. (1987). Is Angelman syndrome an alternate result of del(15)(q11q13)? American Journal of Medical Genetics 28, 829838.CrossRefGoogle Scholar
Magenis, R. E., Toth-Fejel, S., Allen, L. J., Black, M., Brown, M. G., Budden, S., Cohen, R., Friedman, J. M., Kalousek, D., Zonana, J., Lacey, D., LaFranchi, S., Lahr, M., Macfarlane, J. & Williams, C. P. S. (1990). Comparison of the 15q deletions in Prader–Willi and Angelman syndromes: specific regions, extent of deletions, parental origin and clinical consequences. American Journal of Medical Genetics 35, 333349.CrossRefGoogle ScholarPubMed
Mattei, J. F., Mattei, M. G. & Giraud, F. (1983). Prader–Willi syndrome and chromosome 15. Human Genetics 64, 356362.CrossRefGoogle ScholarPubMed
Matthysse, S. W. & Kidd, K. K. (1976). Estimating the genetic contribution to schizophrenia. American Journal of Psychiatry 133, 185191.Google ScholarPubMed
Moore, T. & Haig, D. (1991). Genomic imprinting in mammalian development: a parental tug of war. Trends in Genetics 7, 4549.CrossRefGoogle ScholarPubMed
Myers, R. H., Madden, J. J., Teague, J. C. & Falek, A. (1982). Factors related to onset age of Huntington disease. American Journal of Human Genetics 34, 481488.Google ScholarPubMed
Newcombe, R. G., Walker, D. A. & Harper, P. S. (1981). Factors influencing age at onset and duration of survival in Huntington's chorea. Annals of Human Genetics 45, 387396.CrossRefGoogle ScholarPubMed
Nicholls, R. D., Knoll, J. H. M., Butler, M. G., Karam, S. & Lalande, M. (1989). Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader–Willi syndrome. Nature 342, 281285.CrossRefGoogle Scholar
Niikawa, N. & Ishikiriyama, S. (1985). Clinical and cytogenetic studies of Prader–Willisyndrome: evidence of phenotype-karyotype correlation. Human Genetics 69, 2227.CrossRefGoogle ScholarPubMed
O'Rourke, D. H., Gottesman, I. I., Suarez, B. K., Rice, J. & Reich, T. (1982). Refutation of the general single locus model for the etiology of schizophrenia. American Journal of Human Genetics 34, 630649.Google ScholarPubMed
Reik, W. (1988). Genomic imprinting: a possible mechanism for the parental origin effect in Huntington's chorea. Journal of Medical Genetics 25, 805808.CrossRefGoogle ScholarPubMed
Reik, W., Collick, A., Norris, M. L., Barton, S. C. & Surani, M. A. H. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328, 248251.CrossRefGoogle ScholarPubMed
Reiss, A. L., Feinstein, C., Toomey, K., Rosenbaum, K., Goldsmith, B. & Borengasser-Caruso, M. A. (1986). Psychiatric disability associated with the fragile X chromosome. American Journal of Medical Genetics 23, 393402.CrossRefGoogle ScholarPubMed
Reiss, A. L., Hagerman, R. J., Vinogradov, S., Abrams, M. & King, R. (1988). Psychiatric disability in female carriers of the fragile X chromosome. Archives of General Psychiatry 45, 2530.CrossRefGoogle Scholar
Reiss, A. L., Freund, L., Vinogradov, S., Hagerman, R. & Cronister, A. (1989). Parental inheritance and psychological disability in fragile X females. American Journal of Human Genetics 45, 697705.Google ScholarPubMed
Ridley, R. M., Frith, C. D., Crow, T. I. & Conneally, P. M. (1988). Anticipation in Huntington's disease is inherited through the male line but may-originate in the female. Journal of Medical Genetics 25, 589595.CrossRefGoogle ScholarPubMed
Robb, S. A., Pohl, K. R. E., Baraitser, M., Wilson, J. & Brett, E. M. (1989). The ‘happy puppet’ syndrome of Angelman: review of the clinical features. Archives of Disease in Childhood 64, 8386.CrossRefGoogle ScholarPubMed
Sherman, S. L., Morton, N. E., Jacobs, P. A. & Turner, G. (1984). The marker (X) syndrome: a cytogenetic and genetic analysis. Annals of Human Genetics 48, 2137.CrossRefGoogle ScholarPubMed
Sherman, S. L., Jacobs, P. A., Morton, N. E., Froster-Iskenius, U., Howard-Peebles, P. N., Nielsen, K. B., Partington, M. W., Sutherland, G. R., Turner, G. & Watson, M. (1985). Further segregation analysis of the fragile X syndrome with special reference to transmitting males. Human Genetics 69, 289299.CrossRefGoogle ScholarPubMed
Slater, E. (1958). The monogenic theory of schizophrenia. Acta Genetica (Basel) 8, 5056.Google ScholarPubMed
Solter, D. (1988). Differential imprinting and expression of maternal and paternal genomes. Annual Review of Genetics 22, 127146.CrossRefGoogle ScholarPubMed
Sulzman, A. E. & Surti, U. (1984). Complete and partial hydatidiform moles: cytogenetic and morphological aspects. In Human Trophoblast Neoplasms (ed. Pattillo, R. A. and Hussa, P. O.), pp. 135145. Plenum: New York.Google Scholar
Surani, M. A. H. (1986). Evidences and consequences of differences between maternal and paternal genomes during embryogenesis in the mouse. In Experimental Approaches to Mammalian Embryonic Development (ed. Rossan, J. and Pederson, R. A.), pp. 401435. Cambridge University Press: Cambridge.Google Scholar
Surani, M. A. H. & Barton, S. C. (1983). Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222, 10341036.CrossRefGoogle ScholarPubMed
Surani, M. A. H., Barton, S. C. & Norris, M. L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548550.CrossRefGoogle ScholarPubMed
Sutherland, G. R. (1977 a). Heritable fragile sites on human chromosomes. Demonstrations of their dependence on the type of tissue culture medium. Science 197, 265266.CrossRefGoogle ScholarPubMed
Sutherland, G. R. (1977 b). Marker X chromosome and mental retardation. New England Journal of Medicine 296, 1415.Google Scholar
Turner, G., Till, R. & Daniel, A. (1978). Marker X chromosomes, mental retardation and macro-orchidism. New England Journal of Medicine 299, 1472.Google Scholar
Vincent, A., Heitz, D., Petit, C., Kretz, C., Oberle, I. & Mandel, J.-L. (1991). Abnormal pattern detected in fragile X patients by pulse field gel electrophoresis. Nature 349, 624626.CrossRefGoogle Scholar
Voss, R., Ben-Simon, E., Avital, A., Godfrey, S., Zlotogora, J., Dagan, J., Tikochinski, Y. & Hillel, J. (1989). Isodisomy of chromosome 7 in a patient with cystic fibrosis: could uniparental disomy be common in humans? American Journal of Human Genetics 45, 373380.Google Scholar
Wallace, D. C. (1989). Mitochondrial DNA mutations and neuromuscular disease. Trends in Genetics 5, 913.CrossRefGoogle ScholarPubMed
Webb, T. P., Bundey, S. E., Thake, A. L. & Todd, J. (1986). Population incidence and segregation ratios in the Martin Bell syndrome. American Journal of Medical Genetics 23, 573580.CrossRefGoogle ScholarPubMed
Willems, P. J., Dijkstra, I., Brouwer, O. F. & Smit, G. P. A. (1987). Recurrence risk in the Angelman (‘happy puppet’) syndrome. American Journal of Medical Genetics 27, 773780.CrossRefGoogle ScholarPubMed