Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T01:42:39.525Z Has data issue: false hasContentIssue false

The use of DNA markers to map anthelmintic resistance loci in an intraspecific cross of Haemonchus contortus

Published online by Cambridge University Press:  16 October 2009

P. W. HUNT*
Affiliation:
CSIRO, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, N.S.W.2350, Australia
A. C. KOTZE
Affiliation:
CSIRO Livestock Industries, Brisbane, Australia
M. R. KNOX
Affiliation:
CSIRO, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, N.S.W.2350, Australia
L. J. ANDERSON
Affiliation:
CSIRO, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, N.S.W.2350, Australia
J. McNALLY
Affiliation:
CSIRO, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, N.S.W.2350, Australia
L. F. LE JAMBRE
Affiliation:
CSIRO, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, N.S.W.2350, Australia
*
*Corresponding author: CSIRO, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, N.S.W.2350, Australia. Tel: +61 2 67761321. Fax: +61 2 67761333. E-mail: Peter.Hunt@csiro.au

Summary

The use of DNA markers to track the development of anthelmintic resistance in parasites of livestock would allow informed choices for the management of this important problem. We describe a genetic mapping approach for the discovery of DNA markers for anthelmintic resistance in Haemonchus contortus. We crossed a multi-drug resistant field isolate of H. contortus with a well-characterized laboratory strain susceptible to 4 drug classes. The F2 were separately selected with 5 anthelmintics from 4 drug classes, producing drug-resistant populations carrying gene variants derived from both the field isolate and the laboratory strain. Individual F2 worms were analysed using amplicon length polymorphisms (ALPs). We looked for field isolate alleles over- or under-represented in F2 populations compared to the unselected F2 and/or the laboratory strain. The data we obtained suggest that marker association can be used to link neutral markers with resistance, but also that more markers and perhaps more inbred laboratory strains would make the procedure more likely to succeed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, G. A. and Burgess, S. K. (1988). Serial Passage of Haemonchus contortus in resistant and susceptible sheep. Veterinary Parasitology 28, 303306.CrossRefGoogle ScholarPubMed
Besier, R. B. and Love, S. C. J. (2003). Anthelmintic resistance in sheep nematodes in Australia: the need for new approaches. Australian Journal of Experimental Agriculture 43, 13831391.CrossRefGoogle Scholar
Coles, G. C., Bauer, C., Borgsteede, F. H. M., Geerts, S., Klei, T. R., Taylor, M. A. and Waller, P. J. (1992). World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3544.CrossRefGoogle ScholarPubMed
Dobson, R. J., Besier, R. B., Barnes, E. H., Love, S. C. J., Vizard, A., Bell, K. and Le Jambre, L. F. (2001). Principles for the use of macrocyclic lactones to minimise selection for resistance. Australian Veterinary Journal 79, 756761.CrossRefGoogle ScholarPubMed
Edwards, J. R. and Chaneet, G. D. (1980). Resistance of Haemonchus contortus to thiophanate. Research in Veterinary Science 29, 370372.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G. and Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Geary, T. G., Sangster, N. C. and Thompson, D. P. (1999). Frontiers in anthelmintic pharmacology. Veterinary Parasitology 84, 275295.CrossRefGoogle ScholarPubMed
Gilleard, J. S. and Beech, R. N. (2007). Population genetics of anthelmintic resistance in parasitic nematodes. Parasitology 134, 11331147.CrossRefGoogle ScholarPubMed
Green, P. E., Forsyth, B. A., Rowan, K. J. and Payne, G. (1981). The Isolation of a field strain of Haemonchus contortus in Queensland showing multiple anthelmintic resistance. Australian Veterinary Journal 57, 7984.CrossRefGoogle ScholarPubMed
Hoekstra, R., Criado-Fornelio, A., Fakkeldij, J., Bergman, J. and Roos, M. H. (1997). Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat. Molecular and Biochemical Parasitology 89, 97–107.CrossRefGoogle ScholarPubMed
Hunt, P. W., Knox, M. R., Le Jambre, L. F., McNally, J. and Anderson, L. J. (2008). Genetic and phenotypic differences between isolates of Haemonchus contortus in Australia. International Journal for Parasitology 38, 885900.CrossRefGoogle ScholarPubMed
Huson, D. H. and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254267.CrossRefGoogle ScholarPubMed
Kopp, S. R., Coleman, G. T., McCarthy, J. S. and Kotze, A. C. (2008). Application of in vitro anthelmintic sensitivity assays to canine parasitology: Detecting resistance to pyrantel in Ancylostoma caninum. Veterinary Parasitology 15, 284293.CrossRefGoogle Scholar
Kotze, A. C., Dobson, R. J., Tyrrell, K. L. and Stein, P. A. (2002). High-level Ivermectin resistance in a field isolate of Haemonchus contortus associated with a low level of resistance in the larval stage: Implications for resistance detection. Veterinary Parasitology 108, 255263.CrossRefGoogle Scholar
Kotze, A. C., Le Jambre, L. F. and O'Grady, J. (2006). A modified larval migration assay for detection of resistance to macrocyclic lactones in Haemonchus contortus, and drug screening with Trichostrongylidae parasites. Veterinary Parasitology 137, 294305.CrossRefGoogle ScholarPubMed
Kotze, A. C. and Kopp, S. R. (2008). The potential impact of density dependent fecundity on the use of the faecal egg count reduction test for detecting drug resistance in human hookworms. PLoS Neglected Tropical Diseases 2, e297.CrossRefGoogle ScholarPubMed
Lacey, E., Redwin, J. M., Gill, J. H., DeMargheriti, V. M. and Waller, P. J. (1990). A larval development assay for the simultaneous detection of broad spectrum anthelmintic resistance. In Resistance of Parasites to Antiparasitic Drugs (ed. Boray, J. C., Martin, P. J. and Roush, R. T.), pp. 177184. MSD AGVET, Rahway, NJ, USA.Google Scholar
Le Jambre, L. F. (1979 b). Hybridization studies of Haemonchus contortus (Rudolphi, 1803) and H. placei (Place, 1893) (Nematoda: Trichostrongylidae). International Journal for Parasitology 9, 455463.CrossRefGoogle Scholar
Le Jambre, L. F., Geoghegan, J. and Lyndal-Murphy, M. (2005). Characterization of moxidectin resistant Trichostrongylus colubriformis and Haemonchus contortus. Veterinary Parasitology 128, 8390.CrossRefGoogle ScholarPubMed
Le Jambre, L. F., Gill, J. H., Lenane, I. J. and Baker, P. (2000). Inheritance of avermectin resistance in Haemonchus contortus. International Journal for Parasitology 30, 105111.CrossRefGoogle ScholarPubMed
Le Jambre, L. F., Gill, H. J., Lenane, I. J. and Lacey, E. (1995). Characterisation of an avermectin resistant strain of Australian Haemonchus contortus. International Journal for Parasitology 25, 691698.CrossRefGoogle ScholarPubMed
Le Jambre, L. F., Martin, P. J. and Webb, R. F. (1979 a). Thiabendazole resistance in field populations of Haemonchus contortus. Australian Veterinary Journal 55, 163166.CrossRefGoogle ScholarPubMed
Le Jambre, L. J., Royal, W. M. and Martin, P. J. (1979 c). The inheritance of thiabendazole resistance in Haemonchus contortus. Parasitology 78, 107119.CrossRefGoogle ScholarPubMed
Le Jambre, L. F., Southcott, W. H., and Dash, K. M. (1976). Resistance of selected lines of Haemonchus contortus to thiabendazole, morantel tartrate and Levamisole. International Journal for Parasitology 6, 217222.CrossRefGoogle ScholarPubMed
Love, S. C. J., Neilson, F. J. A., Biddle, A. J. and McKinnon, R. (2003). Moxidectin – resistant Haemonchus contortus in sheep in northern New South Wales. Australian Veterinary Journal 81, 359360.CrossRefGoogle ScholarPubMed
Nei, M. and Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 76, 52695273.CrossRefGoogle ScholarPubMed
Newcombe, R. G. (1998). Improved confidence intervals for the difference between binomial proportions based on paired data. Statistics in Medicine 17, 26352650.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Otsen, M., Plas, M. E., Groeneveld, J., Roos, M. H., Lenstra, J. A. and Hoekstra, R. (2000). Genetic markers for the parasitic nematode Haemonchus contortus based on intron sequences. Experimental Parasitology 95, 226229.CrossRefGoogle ScholarPubMed
Prichard, R. K. and Roulet, A. (2007). ABC transporters and Β-tubulin in macrocyclic lactone resistance: prospects for marker development. Parasitology 134, 11231132.CrossRefGoogle ScholarPubMed
Pritchard, J. K., Stephens, M. and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Rolfe, P. F., Boray, J. C., Fitzgibbon, C., Parsons, G., Kemsley, P. and Sangster, N. (1990). Closantel resistance in Haemonchus contortus from sheep. Australian Veterinary Journal 67, 2931.CrossRefGoogle ScholarPubMed
Sangster, N. C. and Bjorn, H. (1995). Levamisole resistance in Haemonchus contortus selected at different stages of infection. International Journal for Parasitology 25, 343348.CrossRefGoogle ScholarPubMed
Sangster, N. C., Redwin, J. M., and Bjorn, H. (1998). Inheritance of levamisole and benzimidazole resistance in an isolate of Haemonchus contortus. International Journal for Parasitology 28, 503510.CrossRefGoogle Scholar
Slatkin, M. and Excoffier, L. (1996). Testing for linkage disequilibrium in genotypic data using the EM algorithm. Heredity 76, 377383.CrossRefGoogle Scholar
Webb, R. F., McCully, C. H., Clark, F. L., Greentree, P. and Honey, P. (1979). Incidence of thiabendazole resistance in field populations of Haemonchus contortus on the Northern Tablelands of New South Wales. Australian Veterinary Journal 55, 422426.CrossRefGoogle ScholarPubMed