Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T12:33:05.577Z Has data issue: false hasContentIssue false

Shuttle mutagenesis and targeted disruption of a telomere-located essential gene of Leishmania

Published online by Cambridge University Press:  15 December 2006

F. M. SQUINA
Affiliation:
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
A. L. PEDROSA
Affiliation:
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil Current address: Departamento de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, Avenida Frei Paulino, 30, 38025-5045, Uberaba – MG, Brasil.
V. S. NUNES
Affiliation:
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
A. K. CRUZ
Affiliation:
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
L. R. O. TOSI
Affiliation:
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil

Abstract

Leishmania mutants have contributed greatly to extend our knowledge of this parasite's biology. Here we report the use of the mariner in vitro transposition system as a source of reagents for shuttle mutagenesis and targeted disruption of Leishmania genes. The locus-specific integration was achieved by the disruption of the subtelomeric gene encoding a DNA-directed RNA polymerase III subunit (RPC2). Further inactivation of RPC2 alleles required the complementation of the intact gene, which was transfected in an episomal context. However, attempts to generate a RPC2 chromosomal null mutant resulted in genomic rearrangements that maintained copies of the intact locus in the genome. The maintenance of the RPC2 chromosomal locus in complemented mutants was not mediated by an increase in the number of copies and did not involve chromosomal translocations, which are the typical characteristics of the genomic plasticity of this parasite. Unlike the endogenous locus, the selectable marker used to disrupt RPC2 did not display a tendency to remain in its chromosomal location but was targeted into supernumerary episomal molecules.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Augusto, M. J., Squina, F. M., Marchini, J. F., Dias, F. C. and Tosi, L. R. ( 2004). Specificity of modified Drosophila mariner transposons in the identification of Leishmania genes. Experimental Parasitology 108, 109113.CrossRefGoogle Scholar
Beverley, S. M. ( 1991). Gene amplification in Leishmania. Annual Review of Microbiology 45, 417444.CrossRefGoogle Scholar
Beverley, S. M. ( 2003). Protozomics: trypanosomatid parasite genetics comes of age. Nature Reviews Genetics 4, 1119.CrossRefGoogle Scholar
Borst, P. and Rudenko, G. ( 1994). Antigenic variation in African trypanosomes. Science 264, 18721873.CrossRefGoogle Scholar
Clayton, C., Adams, M., Almeida, R., Baltz, T., Barrett, M., Bastien, P., Belli, S., Beverley, S., Biteau, N., Blackwell, J., Blaineau, C., Boshart, M., Bringaud, F., Cross, G., Cruz, A., Degrave, W., Donelson, J., El-Sayed, N., Fu, G., Ersfeld, K., Gibson, W., Gull, K., Ivens, A., Kelly, J. and Vanhamme, L. ( 1998). Genetic nomenclature for Trypanosoma and Leishmania. Molecular and Biochemical Parasitology 97, 221224.CrossRefGoogle Scholar
Coates, C. J., Jasinskiene, N., Morgan, D., Tosi, L. R., Beverley, S. M. and James, A. A. ( 2000). Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology 30, 10031008.CrossRefGoogle Scholar
Cruz, A. and Beverley, S. M. ( 1990). Gene replacement in parasitic protozoa. Nature, London 348, 171173.CrossRefGoogle Scholar
Cruz, A., Coburn, C. M. and Beverley, S. M. ( 1991). Double targeted gene replacement for creating null mutants. Proceedings of the National Academy of Sciences, USA 88, 71707174.CrossRefGoogle Scholar
Cruz, A. K., Titus, R. and Beverley, S. M. ( 1993). Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proceedings of the National Academy of Sciences, USA 90, 15991603.CrossRefGoogle Scholar
del Portillo, H. A., Fernandez-Becerra, C., Bowman, S., Oliver, K., Preuss, M., Sanchez, C. P., Schneider, N. K., Villalobos, J. M., Rajandream, M. A., Harris, D., Pereira Da Silva, L. H., Barrell, B. and Lanzer, M. ( 2001). A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature, London 410, 839842.CrossRefGoogle Scholar
Dumas, C., Ouellette, M., Tovar, J., Cunningham, M. L., Fairlamb, A. H., Tamar, S., Olivier, M. and Papadopoulou, B. ( 1997). Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO Journal 16, 25902598.CrossRefGoogle Scholar
El-Sayed, N. M., Myler, P. J., Blandin, G., Berriman, M., Crabtree, J., Aggarwal, G., Caler, E., Renauld, H., Worthey, E. A., Hertz-Fowler, C., Ghedin, E., Peacock, C., Bartholomeu, D. C., Haas, B. J., Tran, A. N., Wortman, J. R., Alsmark, U. C., Angiuoli, S., Anupama, A., Badger, J., Bringaud, F., Cadag, E., Carlton, J. M., Cerqueira, G. C., Creasy, T., Delcher, A. L., Djikeng, A., Embley, T. M., Hauser, C., Ivens, A. C., Kummerfeld, S. K., Pereira-Leal, J. B., Nilsson, D., Peterson, J., Salzberg, S. L., Shallom, J., Silva, J. C., Sundaram, J., Westenberger, S., White, O., Melville, S. E., Donelson, J. E., Andersson, B., Stuart, K. D. and Hall, N. ( 2005). Comparative genomics of trypanosomatid parasitic protozoa. Science 309, 404409.CrossRefGoogle Scholar
Feinberg, A. P. and Vogelstein, B. ( 1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle Scholar
Freitas-Junior, L. H., Bottius, E., Pirrit, L. A., Deitsch, K. W., Scheidig, C., Guinet, F., Nehrbass, U., Wellems, T. E. and Scherf, A. ( 2000). Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature, London 407, 10181022.Google Scholar
Fu, G. and Barker, D. C. ( 1998). Characterization of Leishmania telomeres reveals unusual telomeric repeats and conserved telomere-associated sequence. Nucleic Acids Research 26, 21612167.CrossRefGoogle Scholar
Garraway, L. A., Tosi, L. R., Wang, Y., Moore, J. B., Dobson, D. E. and Beverley, S. M. ( 1997). Insertional mutagenesis by a modified in vitro Ty1 transposition system. Gene 198, 2735.CrossRefGoogle Scholar
Genest, P. A., ter Riet, B., Dumas, C., Papadopoulou, B., Van Luenen, H. G. and Borst, P. ( 2005). Formation of linear inverted repeat amplicons following targeting of an essential gene in Leishmania. Nucleic Acids Research 33, 16991709.CrossRefGoogle Scholar
Goyard, S., Tosi, L. R., Gouzova, J., Majors, J. and Beverley, S. M. ( 2001). New Mos1 mariner transposons suitable for the recovery of gene fusions in vivo and in vitro. Gene 280, 97105.CrossRefGoogle Scholar
Gueiros-Filho, F. J. and Beverley, S. M. ( 1996). Selection against the dihydrofolate reductase-thymidylate synthase (DHFR-TS) locus as a probe of genetic alterations in Leishmania major. Molecular and Cellular Biology 16, 56555663.CrossRefGoogle Scholar
Gueiros-Filho, F. J. and Beverley, S. M. ( 1997). Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science 276, 17161719.CrossRefGoogle Scholar
Hamer, L., Adachi, K., Montenegro-Chamorro, M. V., Tanzer, M. M., Mahanty, S. K., Lo, C., Tarpey, R. W., Skalchunes, A. R., Heiniger, R. W., Frank, S. A., Darveaux, B. A., Lampe, D. J., Slater, T. M., Ramamurthy, L., Dezwaan, T. M., Nelson, G. H., Shuster, J. R., Woessner, J. and Hamer, J. E. ( 2001 a). Gene discovery and gene function assignment in filamentous fungi. Proceedings of the National Academy of Sciences, USA 98, 51105115.Google Scholar
Hamer, L., DeZwaan, T. M., Montenegro-Chamorro, M. V., Frank, S. A. and Hamer, J. E. ( 2001 b). Recent advances in large-scale transposon mutagenesis. Current Opinion in Chemical Biology 5, 6773.Google Scholar
Horn, D. and Barry, J. D. ( 2005). The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Research 13, 525533.CrossRefGoogle Scholar
Iovannisci, D. M., Goebel, D., Allen, K., Kaur, K. and Ullman, B. ( 1984). Genetic analysis of adenine metabolism in Leishmania donovani promastigotes. Evidence for diploidy at the adenine phosphoribosyltransferase locus. Journal of Biological Chemistry 259, 1461714623.Google Scholar
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M. A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M., Cronin, A., Cruz, A. K., Davies, R. M., De Gaudenzi, J., Dobson, D. E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A. C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J. C., Muller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'Neil, S., Pentony, M., Pohl, T. M., Price, C., Purnelle, B., Quail, M. A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J. C., Rutter, S., Saunders, D., Schafer, M., Schein, J., Schwartz, D. C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S., Zimmermann, W., Smith, D. F., Blackwell, J. M., Stuart, K. D., Barrell, B. and Myler, P. J. ( 2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436442.CrossRefGoogle Scholar
Kapler, G. M., Coburn, C. M. and Beverley, S. M. ( 1990). Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Molecular and Cellular Biology 10, 10841094.CrossRefGoogle Scholar
Leal, S., Acosta-Serrano, A., Morris, J. and Cross, G. A. ( 2004). Transposon mutagenesis of Trypanosoma brucei identifies glycosylation mutants resistant to concanavalin A. Journal of Biological Chemistry 279, 2897928988.CrossRefGoogle Scholar
Marchini, J. F., Cruz, A. K., Beverley, S. M. and Tosi, L. R. ( 2003). The H region HTBF gene mediates terbinafine resistance in Leishmania major. Molecular and Biochemical Parasitology 131, 7781.CrossRefGoogle Scholar
Melville, S. E., Gerrard, C. S. and Blackwell, J. M. ( 1999). Multiple causes of size variation in the diploid megabase chromosomes of African trypanosomes. Chromosome Research 7, 191203.CrossRefGoogle Scholar
Myler, P. J., Audleman, L., DeVos, T., et al. ( 1999). Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proceedings of the National Academy of Sciences, USA 96, 29022906.CrossRefGoogle Scholar
Pearson, R. D. and Sousa, A. Q. ( 1996). Clinical spectrum of Leishmaniasis. Clinical and Infectious Disease 22, 113.CrossRefGoogle Scholar
Pedrosa, A. L. and Cruz, A. K. ( 2002). The effect of location and direction of an episomal gene on the restoration of a phenotype by functional complementation in Leishmania. Molecular and Biochemical Parasitology 122, 141148.CrossRefGoogle Scholar
Pedrosa, A. L., Ruiz, J. C., Tosi, L. R. and Cruz, A. K. ( 2001). Characterisation of three chromosomal ends of Leishmania major reveals transcriptional activity across arrays of reiterated and unique sequences. Molecular and Biochemical Parasitology 114, 7180.CrossRefGoogle Scholar
Pedrosa, A. L., Silva, A. M., Ruiz, J. C. and Cruz, A. K. ( 2006). Characterization of LST-R533: Uncovering a novel repetitive element in Leishmania. International Journal for Parasitology 36, 211217.CrossRefGoogle Scholar
Plasterk, R. H., Izsvak, Z. and Ivics, Z. ( 1999). Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends in Genetics 15, 326332.CrossRefGoogle Scholar
Robinson, K. A., Goyard, S. and Beverley, S. M. ( 2004). In vitro shuttle mutagenesis using engineered mariner transposons. Methods in Molecular Biology 270, 299318.CrossRefGoogle Scholar
Ross-Macdonald, P., Sheehan, A., Friddle, C., Roeder, G. S. and Snyder, M. ( 1999). Transposon mutagenesis for the analysis of protein production, function, and localization. Methods in Enzymology 303, 512532.CrossRefGoogle Scholar
Rudenko, G. ( 2000) The polymorphic telomeres of the African trypanosome Trypanosoma brucei. Biochemical Society Transactions 28, 536540.CrossRefGoogle Scholar
Rudenko, G., Chaves, I., Dirks-Mulder, A. and Borst, P. ( 1998). Selection for activation of a new variant surface glycoprotein gene expression site in Trypanosoma brucei can result in deletion of the old one. Molecular and Biochemical Parasitology 95, 97109.CrossRefGoogle Scholar
Sakamoto, H., Thiberge, S., Akerman, S., Janse, C. J., Carvalho, T. G. and Menard, R. ( 2005). Towards systematic identification of Plasmodium essential genes by transposon shuttle mutagenesis. Nucleic Acids Research 33, e174.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. and Maniatis, T. ( 1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Sunkin, S. M., Kiser, P., Myler, P. J. and Stuart, K. ( 2000). The size difference between Leishmania major Friedlin chromosome one homologues is localized to sub-telomeric repeats at one chromosomal end. Molecular and Biochemical Parasitology 109, 115.CrossRefGoogle Scholar
ten Asbroek, A. L., Ouellette, M. and Borst, P. ( 1990). Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei Nature, London 348, 174175.Google Scholar
Tobin, J. F., Laban, A. and Wirth, D. F. ( 1991). Homologous recombination in Leishmania enriettii. Proceedings of the National Academy of Sciences, USA 88, 864868.CrossRefGoogle Scholar
Tosi, L. R. and Beverley, S. M. ( 2000). cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Research 28, 784790.CrossRefGoogle Scholar
Tosi, L. R., Casagrande, L., Beverley, S. M. and Cruz, A. K. ( 1997). Physical mapping across the dihydrofolate reductase-thymidylate synthase chromosome of Leishmania major. Parasitology 114, 521529.Google Scholar
Tovar, J., Wilkinson, S., Mottram, J. C. and Fairlamb, A. H. ( 1998). Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Molecular Microbiology 29, 653660.CrossRefGoogle Scholar
Turco, S. J., Spath, G. F. and Beverley, S. M. ( 2001). Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends in Parasitology 17, 223226.CrossRefGoogle Scholar
Williams, D. C., Boulin, T., Ruaud, A. F., Jorgensen, E. M. and Bessereau, J. L. ( 2005). Characterization of Mos1-mediated mutagenesis in Caenorhabditis elegans: a method for the rapid identification of mutated genes. Genetics 169, 17791785.CrossRefGoogle Scholar
Zhang, K., Showalter, M., Revollo, J., Hsu, F. F., Turk, J. and Beverley, S. M. ( 2003). Sphingolipids are essential for differentiation but not growth in Leishmania. Embo Journal 22, 60166026.CrossRefGoogle Scholar