Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T08:54:38.670Z Has data issue: false hasContentIssue false

The distribution of genotypes of the trypanosome parasite, Crithidia bombi, in populations of its host, Bombus terrestris

Published online by Cambridge University Press:  06 August 2004

P. SCHMID-HEMPEL
Affiliation:
ETH Zurich, Ecology and Evolution, ETH-Zentrum NW, CH-8092 Zurich, Switzerland
C. REBER FUNK
Affiliation:
ETH Zurich, Ecology and Evolution, ETH-Zentrum NW, CH-8092 Zurich, Switzerland

Abstract

This study reports the distribution of parasite genotypes for the trypanosome Crithidia bombi across individual units (the colonies) in host populations of a social insect, the bumble bee Bombus terrestris. A number of microsatellite primers were developed and several of them were found to be polymorphic in our samples. Furthermore, a simple algorithm was used to identify the likely multi-locus genotypes present in multiply infected host individuals. The results demonstrated a remarkably high degree of genetic diversity among infections. A first sample from 1997 could only use a low resolution with 2 loci and showed a total of 11 different genotypes of C. bombi from 12 colonies. The sample from 2000 was analysed at 6 polymorphic loci and contained data from 8 colonies that were infected by 27 different C. bombi genotypes. Roughly 16% of all individual bees but half of all colonies (2000 sample) were infected with more than 1 genotype. The infections in the different colonies were also genetically distinct from each other, and the parasite population as a whole was in linkage disequilibrium and deviated from Hardy–Weinberg expectations. The highly structured and genetically diversified population of C. bombi is likely to result from strong genotypic host–parasite interactions.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ABDERRAZAK, S. B., OURY, B., LAL, A. A., BOSSENO, M. F., FORCE, B. P., DUJARDIN, J. P., FANDEUR, T., MOLEZ, J. F., KJELLBERG, F., AYALA, F. J. & TIBAYRENC, M. (1999). Plasmodium falciparum: population genetic analysis by multilocus enzyme electrophoresis and other molecular markers. Experimental Parasitology 92, 232238.CrossRefGoogle Scholar
ANTONOVICS, J. (1994). The interplay of numerical and gene-frequency dynamics in host–pathogen systems. In Ecological Genetics (ed. Real, L.), pp. 129145. Princeton University Press, Princeton NJ.
AWADALLA, P., WALLIKER, D., BABIKER, H. & MACKINNON, M. (2001). The question of Plasmodium falciparum population structure. Trends in Parasitology 17, 351353.CrossRefGoogle Scholar
BAER, B. & SCHMID-HEMPEL, P. (1999). Experimental variation in polyandry affects parasite loads and fitness in a bumblebee. Nature, London 397, 151154.CrossRefGoogle Scholar
BAER, B. & SCHMID-HEMPEL, P. (2003). Bumblebee workers from different sire groups vary in susceptibility to parasite infection. Ecology Letters 6, 106110.CrossRefGoogle Scholar
BROWN, M. J. F., SCHMID-HEMPEL, R. & SCHMID-HEMPEL, P. (2003). Strong context-dependent virulence in a host–parasite system: reconciling genetic evidence with theory. Journal of Animal Ecology 72, 9941002.CrossRefGoogle Scholar
CARIUS, H. J., LITTLE, T. J. & EBERT, D. (2001). Genetic variation in a host–parasite association: potential for coevolution and frequency-dependent selection. Evolution 55, 11361145.CrossRefGoogle Scholar
CUI, L., ESCALANTE, A. A., IMWONG, M. & SNOUNOU, G. (2003). The genetic diversity of Plasmodium vivax populations. Trends in Parasitology 19, 220226.CrossRefGoogle Scholar
DURRER, S. & SCHMID-HEMPEL, P. (1994). Shared use of flowers leads to horizontal pathogen transmission. Proceedings of the Royal Society Biological Sciences, Series B 258, 299302.CrossRefGoogle Scholar
DWYER, G., ELKINTON, J. S. & BUONACCORSI, J. P. (1997). Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model. American Naturalist 150, 685707.CrossRefGoogle Scholar
GAUNT, M. W., YEO, M., FRAME, I. A., STOTHARD, J. R., CARRASCO, H. J., TAYLOR, M. C., SOLIS MENA, S., VEAZEY, P., MILES, G. A. J., ACOSTA, N., ROJAS DE ARIAS, A. & MILES, M. A. (2003). Mechanism of genetic exchange in American trypanosomes. Nature, London 421, 936939.CrossRefGoogle Scholar
GIBSON, W., GARSIDE, L. & BAILEY, M. (1992). Trisomy and chromosome size changes in hybrid trypanosomes from a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. Molecular Biochemistry and Parasitology 52, 189200.CrossRefGoogle Scholar
GIBSON, W. & STEVENS, J. (1999). Genetic exchange in the Trypanosomatidae. Advances in Parasitology 43, 146.CrossRefGoogle Scholar
GLENN, T. C. (2001). Microsatellite Manual, Version 6. Laboratory of Molecular Systematics, MRC 534, MSC, Smithsonian Institution, Washington DC.
GRIGG, M. E. & SUZUKI, Y. (2003). Sexual recombination and clonal evolution of virulence in Toxoplasma. Microbes and Infection 5, 685690.CrossRefGoogle Scholar
GUPTA, S. & ANDERSON, R. M. (1999). Population structure of pathogens: the role of immune selection. Parasitology Today 15, 497501.CrossRefGoogle Scholar
GUPTA, S., FERGUSON, N. M. & ANDERSON, R. M. (1997). Vaccination and the population structure of antigenically diverse pathogens that exchange genetic material. Proceedings of the Royal Society London, B 264, 14351443.CrossRefGoogle Scholar
HAMILTON, W. D. (1980). Sex versus non-sex versus parasite. Oikos 35, 282290.CrossRefGoogle Scholar
HAMILTON, W. D., HENDERSON, P. A. & MORAN, N. A. (1981). Fluctuation of environment and coevolved antagonist polymorphism as factors in the maintenance of sex. In Natural Selection and Social Behavior (ed. Alexander, R. D. & Tinkle, D. W.), pp. 363381. Chiron Press, New York.
IMHOOF, B. & SCHMID-HEMPEL, P. (1998). Colony success of Bombus terrestris and microparasitic infections in the field. Insects Sociaux 46, 223238.Google Scholar
JELINEK, T., KILIAN, A. H. D., WESTERMEIER, A., PROELL, S., KABAGAMBE, G., NOTHDURFT, H. D., VON, S. F. & LEOSCHER, T. (1999). Population structure of recrudescent Plasmodium falciparum isolates from Western Uganda. Tropical Medicine and International Health 4, 476480.CrossRefGoogle Scholar
KIRZHNER, V. M., KOROL, A. B. & NEVO, E. (1999). Abundant multilocus polymorphism caused by genetic interaction between species on trait-for-trait basis. Journal of Theoretical Biology 198, 6170.CrossRefGoogle Scholar
LECLERC, M. C., DURAND, P., DE, M. T., ROBERT, V. & RENAUD, F. (2002). Genetic diversity and population structure of Plasmodium falciparum isolates from Dakar, Senegal, investigated from microsatellite and antigen determinant loci. Microbes and Infection 4, 685692.CrossRefGoogle Scholar
LIVELY, C. M. (1996). Host–parasite coevolution and sex – Do interactions between biological enemies maintain genetic variation and cross-fertilization? BioScience 46, 107114.Google Scholar
LIVELY, C. M. & APANIUS, V. (1995). Genetic diversity in host–parasite interactions. In Ecology of Infectious Diseases in Natural Populations ( ed. Grenfell, B. T. & Dobson, A. P. ), pp. 421449. Cambridge University Press, Cambridge.CrossRef
LYTHGOE, K. A. (2002). Effects of acquired immunity and mating strategy on the genetic structure of parasite populations. American Naturalist 159, 519529.CrossRefGoogle Scholar
MACFARLANE, R. P., LIPA, J. J. & LIU, H. J. (1995). Bumble bee pathogens and internal enemies. Bee World 76, 130148.CrossRefGoogle Scholar
MacLEOD, A., TWEEDIE, A., WELBURN, S. C., MAUDLIN, I., TURNER, C. M. R. & TAIT, A. (2000). Minisatellite marker analysis of Trypanosoma brucei: reconciliation of clonal, panmictic, and epidemic population genetic structures. Proceedings of the National Academy of Sciences, USA 97, 1344213447.CrossRefGoogle Scholar
MALLON, M., MacLEOD, A., WASTLING, J., SMITH, H., REILLY, B. & TAIT, A. (2003). Population structures and the role of genetic exchange in the zoonotic pathogen Cryptosporidium parvum. Journal of Molecular Evolution 56, 407417.CrossRefGoogle Scholar
MAYNARD SMITH, J., SMITH, N. H., O'ROURKE, M. & SPARTT, B. G. (1993). How clonal are bacteria? Proceedings of the National Academy of Sciences, USA 90, 43484388.Google Scholar
NOWAK, M. A. & MAY, R. M. (1994). Superinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London, B 255, 8189.CrossRefGoogle Scholar
OLIVEIRA, R. P., BROUDE, N. E., MACEDO, A. M., CANTOR, C. R., SMITH, C. L. & PENA, S. D. J. (1998). Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proceedings of the National Academy of Sciences, USA 95, 37763780.CrossRefGoogle Scholar
PEAKALL, R. & SMOUSE, P. E. (2001). GenAlEx V5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Australian National University, Canberra, Australia.
PLOWRIGHT, R. C. & JAY, S. C. (1966). Rearing bumble bee colonies in captivity. Journal of Apicultural Research 5, 155165.CrossRefGoogle Scholar
RAYMOND, M. & ROUSSET, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.Google Scholar
READ, A. F. & TAYLOR, L. H. (2001). The ecology of genetically diverse infections. Science 292, 10991102.CrossRefGoogle Scholar
RICH, S. M. & AYALA, F. J. (2000). Population structure and recent evolution of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 97, 69947001.CrossRefGoogle Scholar
SCHMID-HEMPEL, P. (2001). On the evolutionary ecology of host–parasite interactions – adressing the questions with bumblebees and their parasites. Naturwissenschaften 88, 147158.CrossRefGoogle Scholar
SCHMID-HEMPEL, P. (2003). Variation in immune defence as a question of evolutionary ecology. Proceedings of the Royal Society London, B 270, 357366.CrossRefGoogle Scholar
SCHMID-HEMPEL, P. & EBERT, D. (2003). On the evolutionary ecology of specific immune defence. Trends in Ecology and Evolution 18, 2732.CrossRefGoogle Scholar
SCHMID-HEMPEL, P., MÜLLER, C., SCHMID-HEMPEL, R. & SHYKOFF, J. A. (1990). Frequency and ecological correlates of parasitism by conopid flies (Conopidae, Diptera) in populations of bumblebees. Insectes Sociaux 37, 1430.CrossRefGoogle Scholar
SCHMID-HEMPEL, P., PUHR, K., KRÜGER, N., REBER, C. & SCHMID-HEMPEL, R. (1999). Dynamic and genetic consequences of variation in horizontal transmission for a microparasitic infection. Evolution 53, 426434.CrossRefGoogle Scholar
SCHMID-HEMPEL, P. & SCHMID-HEMPEL, R. (1993). Transmission of a pathogen in Bombus terrestris, with a note on division of labour in social insects. Behavioural Ecology and Sociobiology 33, 319327.CrossRefGoogle Scholar
SCHMID-HEMPEL, R. & SCHMID-HEMPEL, P. (2000). Female mating frequencies in social insects: Bombus spp. from Central Europe. Insectes Sociaux 47, 3641.Google Scholar
SHYKOFF, J. A. & SCHMID-HEMPEL, P. (1991). Parasites and the advantage of genetic variability within social insect colonies. Proceedings of the Royal Society London, B 243, 5558.CrossRefGoogle Scholar
STAHL, E. A., DWYER, G., MAURICIO, R., KREITMANN, M. & BERGELSON, J. (1999). Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature, London 400, 667671.CrossRefGoogle Scholar
TAIT, A. (1980). Evidence for diploidy and mating in trypanosomes. Nature, London 237, 536538.CrossRefGoogle Scholar
THOMPSON, J. N. & BURDON, J. J. (1992), Gene-for-gene coevolution between plants and parasites. Nature, London 360, 121125.CrossRefGoogle Scholar
TIBAYRENC, M. (1995). Population genetics of parasitic protozoa and other microorganisms. Advances in Parasitology 36, 47115.CrossRefGoogle Scholar
TIBAYRENC, M. (1996). Towards a unified evolutionary genetics of microorganisms. Annual Review of Microbiology 50, 401429.CrossRefGoogle Scholar
TIBAYRENC, M. (1999). Toward an integrated genetic epidemiology of parasitic protozoa and other pathogens. Annual Review of Genetics 33, 449477.CrossRefGoogle Scholar
TIBAYRENC, M. & AYALA, F. J. (1999). Evolutionary genetics of Trypanosoma and Leishmania. Microbes and Infection 1, 465472.CrossRefGoogle Scholar
TIBAYRENC, M. & AYALA, F. J. (2002). The clonal theory of parasitic protozoa: 12 years on. Trends in Parasitology 18, 405410.CrossRefGoogle Scholar
VAN BAALEN, M. & SABELIS, M. W. (1996). The dynamics of multiple infection and the evolution of virulence. American Naturalist 146, 881910.Google Scholar
VOTYPKA, J., RAY, D. S. & LUKES, J. (2001). Crithidia fasciculata: a test for genetic exchange. Experimental Parasitology 99, 104107.CrossRefGoogle Scholar
WAKELIN, D. & WALLIKER, D. (1996). Genetics of host and parasite – implications for immunity, epidemiology and evolution. Parasitology 112, S1S4.Google Scholar
WU, W. (1994). Microevolutionary studies on a host–parasite interaction. Ph.D. thesis, Phil.-Naturwiss. Fakultät, University of Basel, Basel.
ZAJICEK, P. (1991). Trypanosoma cf. carassii: the combination of maloc enzyme patterns supports the theory of diploidy in trypanosomes. International Journal for Parasitology 21, 753755.Google Scholar