Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T17:41:43.833Z Has data issue: false hasContentIssue false

Deforestation: effects on vector-borne disease

Published online by Cambridge University Press:  23 August 2011

J. F. Walsh
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
D. H. Molyneux*
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
M. H. Birley
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
*
Corresponding author.

Summary

This review addresses' changes in the ecology of vectors and epidemiology of vector-borne diseases which result from deforestation. Selected examples are considered from viral and parasitic infections (arboviruses, malaria, the leishmaniases, nlariases, Chagas Disease and schistosomiasis) where disease patterns have been directly or indirectly influenced by loss of natural tropical forests. A wide range of activities have resulted in deforestation. These include colonisation and settlement, transmigrant programmes, logging, agricultural activities to provide for cash crops, mining, hydropower development and fuelwood collection. Each activity influences the prevalence, incidence and distribution of vector-borne disease. Three main regions are considered – South America, West & Central Africa and South-East Asia. In each, documented changes in vector ecology and behaviour and disease pattern have occurred. Such changes result from human activity at the forest interface and within the forest. They include both deforestation and reafforestation programmes. Deforestation, or activities associated with it, have produced new habitats for Anopheles darlingi mosquitoes and have caused malaria epidemics in South America. The different species complexes in South-East Asia (A. dirus, A. minimus, A. balabacensis) have been affected in different ways by forest clearance with different impacts on malaria incidence. The ability of zoophilic vectors to adapt to human blood as an alternative source of food and to become associated with human dwellings (peridomestic behaviour) have influenced the distribution of the leishmaniases in South America. Certain species of sandflies (Lutzomyia intermedia, Lu. longipalpis, Lu. whitmani), which were originally zoophilic and sylvatic, have adapted to feeding on humans in peridomestic and even periurban situations. The changes in behaviour of reservoir hosts and the ability of pathogens to adapt to new reservoir hosts in the newly-created habitats also influence the patterns of disease. In anthroponotic infections, such as Plasmodium, Onchocerca and Wuchereria, changes in disease patterns and vector ecology may be more difficult to detect. Detailed knowledge of vector species and species complexes is needed in relation to changing climate associated with deforestation. The distributions of the Anopheles gambiae and Simulium damnosum species complexes in West Africa are examples. There have been detailed longitudinal studies of Anopheles gambiae populations in different ecological zones of West Africa. Studies on Simulium damnosum cytoforms (using chromosome identification methods) in the Onchocerciasis Control Programme were necessary to detect changes in distribution of species in relation to changed habitats. These examples underline the need for studies on the taxonomy of medically-important insects in parallel with long-term observations on changing habitats. In some circumstances, destruction of the forest has reduced or even removed disease transmission (e.g. S. neavei-transmitted Onchocerca in Kenya). Whilst the process of deforestation can be expected to continue, hopefully at a decreased rate, it is expected that unpredictable and sometimes rapid changes in disease patterns will pose problems for the public health services.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abisudjak, B. & Kotanegara, R. (1989). Transmigration and vector-borne diseases in Indonesia. In Demography and Vector-borne Diseases (ed. Service, M. W.), pp. 207–33. Boca Raton: CRC Press.Google Scholar
Anderson, J., Fuglsang, H., Hamilton, P. J. S. & Marshall, T. F., De, C. (1974). Studies on onchocerciasis in the United Cameroon Republic. II. Comparison on onchocerciasis in rain-forest and Sudan Savanna. Transactions of the Royal Society of Tropical Medicine & Hygiene 68, 209–22.CrossRefGoogle ScholarPubMed
ANON. (1986). Is New World Onchocerciasis Spreading? Parasitology Today 2, 131.CrossRefGoogle Scholar
Arene, F. O., Ukpeibo, E. T. & Nwanze, E. A. (1989). Studies on schistosomiasis in the Niger Delta: Schistosoma intercalatum in the urban city of Port Harcourt, Nigeria. Public Health 103, 295301.CrossRefGoogle ScholarPubMed
Arruda, De M., Nardin, E. H., Nussenzweig, R. S. & Cochrane, A. H. (1989). Sero-epidemiological studies of malaria in Indian tribes and monkeys of the Amazon Basin of Brazil. American Journal of Tropical Medicine & Hygiene 41, 379–85.CrossRefGoogle Scholar
Ault, S. K. (1989). Effects of demographic patterns, social structure and human behaviour on malaria. In Demography and Vector-borne Diseases (ed. Service, M. W.) pp. 283301. Boca Raton: CRC Press.Google Scholar
Baker, R. H. A., Guillet, P., Seketeli, A., Poudiougo, P., Boakye, D., Wilson, M. D. & Bissan, Y. (1990). Progress in controlling the reinvasion of windborne vectors into the western area of the Onchocerciasis Control Programme in West Africa. Philosophical Transactions of the Royal Society of London, Series B 328, 731–50.Google ScholarPubMed
Bannerjee, J. (1988). Kyasanur Forest Disease, pp. 93116. In The Arboviruses: Epidemiology and Ecology. Vol. III (Ed. Monath, T. P.). CRC Press, Boca Raton, Florida pp. 234.Google Scholar
Barrett, T. V., Hoff, R., Mott, K. E., Guedes, F. & Sherlock, I. A. (1979). An outbreak of acute Chagas’ disease in the Sao Francisco valley region of Bahia, Brazil: triatomine vectors and animal reservoirs of Trypanosoma cruzi. Transactions of the Royal Society of Tropical Medicine & Hygiene 73, 703–9.CrossRefGoogle Scholar
Barrett, T. V. & Senra, M. s. (1989). Leishmaniasis in Manaus, Brazil. Parasitology Today 5, 255–7.CrossRefGoogle ScholarPubMed
Bartolini, R., Bedoya, E., Calmet, J., Campos, M., Fernandez, E., Mora, C. & Wahl, L. (1988). Social epidemiology of Leishmaniasis in the central jungle of Peru. In IDRC Manuscript Report 184e, pp. 204–31. Ottawa: IDRC.Google Scholar
Becquet, R. & Decroocq, J. (1973). Decouverte d'un foyer actif de bilharziose intestinale a Schistosoma intercalatum en Republique Centrafricaine. Bulletin de la Société de Pathologie exotique et de la Filiales 66, 720–7.Google Scholar
Ben-SIRA, I., Ticho, U. & Yassur, Y. (1972). Onchocerciasis in Malawi: prevalence and distribution. Transactions of the Royal Society of Tropical Medicine & Hygiene 66, 296–9.CrossRefGoogle Scholar
Biagi, F. F., De Biagi, A. M. & Beltran, F. (1965). Phlebotomus flaviscutellata. Transmissor natural de Leishmania mexicana. Presa Medica Mexicana 30, 267–72.Google Scholar
Boshell-M, J. (1969). Kyasanur forest disease: ecological considerations. American Journal of Tropical Medicine and Hygiene 18, 6780.CrossRefGoogle Scholar
Brown, D. S. (1980). Freshwater Snails of Africa and their Medical Importance. London: Taylor and Francis.Google Scholar
Bucher, E. H. & Schofield, C. J. (1981). Economic assault on Chagas’ Diseases. New Scientist 2, 321–4.Google Scholar
Buckley, J. J. C. (1951). Studies on human onchocerciasis and Simulium in Nyanza Province, Kenya. II. The disappearance of S. neavei from a bush-cleared focus. Journal of Helminthology 25, 213–22.CrossRefGoogle Scholar
Burnham, G. M. (1991). Onchocerciasis in Malawi. 1. Prevalence, intensity and geographical distribution of Onchocerca volvulus infection in the Thyolo highlands. Transactions of the Royal Society of Tropical Medicine & Hygiene 85, 493–6.CrossRefGoogle ScholarPubMed
Butterworth, A. E. (1992). Vaccines against schistosomiasis: where do we stand? Transactions of the Royal Society of Tropical Medicine & Hygiene 86, 12.CrossRefGoogle ScholarPubMed
Chang, M. S., Ho, B. C. & Chan, K. L. (1991). Efficacy of diethylcarbamazine and pirimiphos-methyl residual spraying in controlling brugian filariasis. Tropical Medicine & Parasitology 42, 95102.Google ScholarPubMed
Charlwood, J. D. & Alecrim, w. A. (1989). Capture-recapture studies with the South American malaria vector Anopheles darlingi, Root. Annals of Tropical Medicine and Parasitology 83, 569–76.CrossRefGoogle ScholarPubMed
Cheong, W. H. (1983). Vectors of filariasis in Malaysia. In Filariasis. Bulletin No. 19 Institute for Medical Research Malaysia, (ed. Mak, J. W.), pp. 3744. Kuala Lumpur: Institute for Medical Research.Google Scholar
Coimbra, C. E. A. (1988). Human factors in the epidemiology of Malaria in the Brazilian Amazon. Human Organization 47, 254–60.CrossRefGoogle Scholar
Coluzzi, M. (1992). Malaria vector analysis and control. Parasitology Today 8, 113–18.CrossRefGoogle ScholarPubMed
Coluzzi, M., Petrarca, V. & Di Deco, M. A. (1985). Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. Bolletin Zoologica 52, 4563.CrossRefGoogle Scholar
Coluzzi, M., Petrarca, V. & Di Deco, M. A. (1990). Parasitologia 32 (Suppl.), 66–7.Google Scholar
Dadzie, K. Y., Remme, J., Baker, R. H. A., Rolland, A. & Thylefors, B. (1990). Ocular onchocerciasis and intensity of infection in the community. III. African rainforest foci of the vector Simulium sanctipauli. Tropical Medicine & Parasitology 41, 376–82.Google ScholarPubMed
Davies, J. B. (1985). Observations of Simulium damnosum s.l. in the Thyolo Highlands of Malawi. World Health Organization mimeographed document WHO/ONCHO/85.338.Google Scholar
Davis, G. M. & Greer, G. J. (1980). A new Genus and two new species of Triculinae (Gastropoda: Prosobranchia) and the transmission of a Malaysian mammalian Schistosoma sp. Proceedings of the Academy of Natural Sciences, Philadelphia 132, 245–50.Google Scholar
Deane, M. P., Lenzi, H. L. & Jansen, A. M. (1986). Double development cycle of Trypanosoma cruzi in the opossum. Parasitology Today 2, 146–7.CrossRefGoogle ScholarPubMed
Dedet, J. P., Pajot, F. X., Desjeux, P., Goyot, P., Chippaux, J. F. & Geoffroy, B. (1985). Natural hosts of Leishmaniasis mexicana amazonensis Lainson & Shaw, 1972 (Kinetoplastida: Trypanosomatidae) in French Guyana. Transactions of the Royal Society of Tropical Medicine & Hygiene 79, 302–5.CrossRefGoogle Scholar
De Sole, G. (1990). Migration studies in the onchocerciasis controlled areas of West Africa. Tropical Medicine and Parasitology 41, 33–6.Google ScholarPubMed
Disney, R. H. L. (1968). Observations on a zoonosis: Leishmaniasis in British Honduras. Journal of Applied Ecology 5, 159.CrossRefGoogle Scholar
DOUMENGE, J. P., MITTKE CHEUNG, C., VILLENAVE, D., CHAPLLIS, O., PERRIN, M. R. & REAUD-THOMAS, G. (ed ) (1987). Atlas of the global distribution of Schistosomiasis. Centre National de la Recherche Scientifique/World Health Organization. Bordeaux: Presses Universitaires de Bordeaux.Google Scholar
Downs, W. G. & Pittendrigh, C. S. (1949). Bromeliad malaria in Trinidad, British West Indies. American Journal of Tropical Medicine & Hygiene 26, 4766.Google Scholar
Duke, B. O. L. (1955). Studies on the biting habits of Chrysops. IV. The dispersal of C. silacea over cleared areas from the rainforest at Kumba, British Cameroon. Annals of Tropical Medicine and Parasitology 49, 368–75.CrossRefGoogle Scholar
Duke, B. O. L. (1972). Behavioral aspects of the life cycle of Loa. In Behavioral aspects of parasitic transmission. Supplement No. 1 Zoological Journal of the Linnean Society 51, (ed. Canning, E. U. & Wright, C. A.), pp. 97107. London: Academic Press.Google Scholar
Duke, B. O. L., Lewis, D. J. & Moore, P. J. (1966). Onchocerca-Simulium complexes. I. Transmission of forest and Sudan-savanna strains of Onchocerca volvulus, from Cameroon, by Simulium damnosum from various West African bioclimatic zones. Annals of Tropical Medicine & Parasitology 60, 318–36.CrossRefGoogle ScholarPubMed
Esterre, P., Chippaux, J. P., Lefait, J. F. & Dedet, J. P. (1986). Evaluation d'un programme de lutte contre la leishmaniose cutanée dans un village forestier de Guyane française. Bulletin of the World Health Organization 64, 559–65.Google Scholar
Fiennes, R. N. T. W. (1978). Zoonoses and the origins and ecology of human disease. London: Academic Press.Google Scholar
Forattini, O. P. (1989). Chagas’ disease and human behaviour. In Demography and Vector-borne Disease, (ed. Service, M. W.), pp. 107–20. Boca Raton: CRC Press.Google Scholar
Garms, R., Cheke, R. A. & Sachs, R. (1991). A temporary focus of savanna species of the Simulium damnosum complex in the forest zone of Liberia. Tropical Medicine and Parasitology 42, 181–87.Google ScholarPubMed
Garms, R. & Vajime, c. G. (1975). On the ecology and distribution of the species of the Simulium damnosum complex in different climatic zones of Liberia and Guinea. Tropical Medicine & Parasitology 26, 375–80.Google ScholarPubMed
Garner, A., Duke, B. O. L. & Anderson, J. (1973). A comparison of the lesions produced in the cornea of the rabbit eye by microfilariae of the forest and Sudan Savanna strains of Onchocerca volvulus from Cameroon. Tropical Medicine & Parasitology 24, 385–96.Google ScholarPubMed
Gerais, B. B. & Ribeiro, T. C. (1985). Onchocerca volvulos (sic)- l.o. caso autoctone da regiao Centro-Oeste. Revista Sociedade Brasiliana Medicina Tropical 19, 68.Google Scholar
Gentile, B., Le Pont, F., Pajot, F. X. & Besnard, R. (1981) Dermal leishmaniasis in French Guiana: the sloth (Choloepus didactylus) as a reservoir host. Transactions of the Royal Society of Tropical Medicine & Hygiene 75, 612–3.CrossRefGoogle ScholarPubMed
Gillett, J. D. (1971). Mosquitos. London: Weidenfeld and Nicholson.Google Scholar
Gomes, A. C., Santos, J. L. F. & Galati, E. A. B. (1986) Ecological aspects of American cutaneous leishmaniasis. Revista da Saude Publica, Sao Paulo 20, 280.CrossRefGoogle ScholarPubMed
Gopsill, W. L. (1939). Onchocerciasis in Nyasaland. Transactions of the Royal Society of Tropical Medicine & Hygiene 32, 551–2.CrossRefGoogle Scholar
Greer, G. J., Ow-Yang, C. K., Inder Singh, K. & Lim, H. K. (1980). Discovery of a site of transmission and hosts of a Schistosoma japonicum-like schistosome in Peninsular Malaysia. Transactions of the Royal Society of Tropical Medicine & Hygiene 74, 425.CrossRefGoogle ScholarPubMed
Grunewald, J., Grunewald, B. E., Raybould, J. N. & Mhiddin, H. K. (1979). The hydrochemical and physical characteristics of the breeding sites of the Simulium neavei Roubard group and their associated crabs in the Eastern Usambara mountains in Tanzania. Internationale Revue der gesameten Hydrobiologie 64, 7188.CrossRefGoogle Scholar
Guderian, R. H., Beck, B. J. & Proano, S. R. (1990). Onchocerciasis in Ecuador: infection in children in the Santiago Basin focus, Province of Esmeraldas. Transactions of the Royal Society of Tropical Medicine & Hygiene 84, 109–12.CrossRefGoogle ScholarPubMed
Guderian, R. H., Molea, J., Swanson, D., Proana, S. R., Carillo, D. R. & Swanson, W. L. (1983). Onchocerciasis in Ecuador. I. Prevalence and distribution in the Province of Esmeraldas. Tropical Medicine and Parasitology 34, 143–8.Google ScholarPubMed
Guderian, R. H. & Shelley, A. J. (1992). Onchocerciasis in Ecuador: the situation in 1989. Memorias do Instituto Oswaldo Cruz (in press).CrossRefGoogle Scholar
Haddow, A. J., Smithburn, K. C., Mahaffy, A. F. & Bugher, J. C. (1947). Monkeys in relation to yellow fever in Bwamba County, Uganda. Transactions of the Royal Society of Tropical Medicine & Hygiene 40, 677700.CrossRefGoogle ScholarPubMed
Hamilton, A. C. (1984). Deforestation in Uganda. Nairobi: Oxford University Press.Google Scholar
Harinasuta, C. (1984). Epidemiology and control of Schistosomiasis in southeast Asia. Southeast Asian Journal of Tropical Medicine and Public Health 15, 431–8.Google ScholarPubMed
Harrison, P. (1992). The Third Revolution: Environment, Population and a Sustainable World. I. B. Tauris Co. Ltd., London & New York.Google Scholar
Henry, M. C. (1988). Le Foyer historique d'onchocercose a Kinsuka/Kinshasa de 1940 a 1985. Thesis, Catholic University of Louvain, Belgium.Google Scholar
Henry, M. C. (1990). Natural and biological control of onchocerciasis focus at Kinsuka/Kinshasa, Republic of Zaire. Acta Leidensia 59, 463–4.Google Scholar
Hildyard, N. (1989). Adios Amazonia? A report from the Altimira gathering. The Ecologist 19, 5362.Google Scholar
Hoch, A., Ryan, L., Vexenat, J. A., Rose, A. C. O. C. & Berretto, A. (1986). Isolation of Leishmania braziliensis braziliensis and other trypanosomatids from Phelebotomine in a mucocutaneous leishmaniasis endemic area, Bahia, Brazil. Memórias do Instituto Oswaldo Cruz (Supplement) 81, 62.Google Scholar
Hoeppli, R. (1969). Parasitic diseases in Africa and the western hemisphere: early documentation and transmission by the slave trade. Acta Tropica Supplement 13.Google Scholar
Hoogstraal, H. (1966). Ticks in relation to human diseases caused by viruses. Annual Review of Entomology 11, 261308.CrossRefGoogle ScholarPubMed
Hoogstraal, H. (1981). Changing patterns of tick-borne diseases in modern society. Annual Review of Entomology 26, 7599.CrossRefGoogle ScholarPubMed
Issaris, P. C., Rastogi, S. N. & Ramakrishna, V. (1953). The malaria transmission in the Terai, Naini Tal District, Uttar Pradesh, India. Bulletin of the World Health Organization 9, 311–33.Google Scholar
Jackson, J. H. (1965). Bilharziasis: an approach to the control of an endemic disease with particular reference to Natal and Zululand. South African Medical Journal 39, 152–8.Google Scholar
Jones, T. W. T. (1951). Deforestation and epidemic malaria in the wet and intermediate zones of Ceylon. Indian Journal of Malariology 5, 135–61.Google ScholarPubMed
Jordan, P. & Webbe, G. (1982). Schistosomiasis, Treatment and Control. London: Heinemann.Google Scholar
Kaplan, J. E., Larrick, J. W., Yost, J., Farrell, L., Greenberg, H. B., Herrmann, K. L., Sulzer, A. J., Walls, K. W. & Pederson, L. (1980). Infectious disease patterns in the Waorani, an isolated Amerindian population. American Journal of Tropical Medicine & Hygiene 29, 298312.CrossRefGoogle ScholarPubMed
Ketrangsee, S., Suvannadabba, S., Thimasarn, K., Prasittisuk, C. & Rooney, W. (1991). Malaria situation in Thailand with special reference to forest related malaria. In Forest Malaria in Southeast Asia, (ed. Sharma, V. P. & Kondrashin, A. V.), pp. 193220. New Delhi: WHO/MRC.Google Scholar
Killick-Kendrick, R., Molyneux, D. H. & Rioux, J. A. (1980). Possible origins of Leishmania chagasi. Annals of Tropical Medicine & Parasitology 74, 563–5.CrossRefGoogle ScholarPubMed
Kingman, S. (1991). South America declares war on Chagas diseases. New Scientist, 19 October, 16-17.Google Scholar
Lainson, R. (1983). The American leishmaniases: some observations on their ecology and epidemiology. Transactions of the Royal Society of Tropical Medicine & Hygiene 77, 569–96.CrossRefGoogle ScholarPubMed
Lainson, R. (1989). Demographic changes and their influence of the epidemiology of the American leishmaniases. In Demography and Vector-borne Disease, (ed. Service M. W.), pp. 85106. Boca Raton: CRC Press.Google Scholar
Lainson, R. & Shaw, J. J. (1973). Leishmaniasis and leishmaniasis in the New World with particular reference to Brazil. Bulletin of the Pan-American Health Organization 7, 119.Google Scholar
Lainson, R., Shaw, J. J., Fraiha, H., Miles, M. A. & Draper, C. C. (1979). Chagas’ disease in the Amazon basin: I. Trypanosoma cruzi infections in silvatic mammals, triatomine bugs and man in the State of Para, North Brazil. Transactions of the Royal Society of Tropical Medicine & Hygiene, 73, 193204.CrossRefGoogle Scholar
Lainson, R., Shaw, J. J., Silveira, F. T. & Fraiha, H. (1983). Leishmaniasis in Brazil. XIX. Visceral leishmaniasis in the Amazon Region, and the presence of Lutzomyia longiphalpis on the Island of Marajo, Para State. Transactions of the Royal Society of Tropical Medicine & Hygiene 77, 323–30.CrossRefGoogle ScholarPubMed
Lainson, R., Shaw, J. J., Ryan, L., Ribeiro, R. S. M. & Silveira, F. T. (1984). Presente situacao da leishmaniose visceral na Amazonia, com especial referencia a um novo surto de doenca ocorrido em Santarem, Estado do Para. Boletim Epidemiologia (numero especial), Fundacao SESP, Rio de Janeiro.Google Scholar
Lainson, R. & Strangways-DIXON, J. (1964). The epidemiology of dermal leishmaniasis in British Honduras. Transactions of the Royal Society of Tropical Medicine & Hygiene 58, 136–53.CrossRefGoogle ScholarPubMed
Lainson, R., Shaw, J. J., Ward, R. D. & Fraiha, H. (1973). Leishmaniasis in Brazil. IX. Considerations on the Leishmania braziliensis complex: Importance of sandflies of the genus Psychodopygus (Mangabeira) in the transmission of L. braziliensis braziliensis in N. Brazil. Transactions of the Royal Society of Tropical Medicine & Hygiene 67, 184–96.CrossRefGoogle Scholar
Lewis, D. J. (1961). The Simulium neavei complex (Diptera, Simuliidae) in Nyasaland. Journal of Animal Ecology 30, 303–10.CrossRefGoogle Scholar
Lewis, D. J., Lyons, G. R. L. & Marr, J. D. M. (1961). Observation on Simulium damnosum from the Red Volta in Ghana. Annals of Tropical Medicine & Parasitology 55, 202–10.CrossRefGoogle ScholarPubMed
Loreau, M. & Baluku, B. (1991). Shade as a means of ecological control of Biomphalaria pfeifferi. Annals of Tropical Medicine & Parasitology 85, 443–6.CrossRefGoogle ScholarPubMed
Lourenco-De-Oliveira, R., Guimaraes, A. E., Arle, M., Da Silva, T. F., Castro, M. G., Motta, M. A. & Deane, L. M. (1989). Anopheline species, some of their habits and relation to malaria in endemic areas of Rondonia State, Amazon region of Brazil. Memdrias do Instituto Oswaldo Cruz 84, 501–14.CrossRefGoogle ScholarPubMed
Mccrae, A. W. R. (1978). Intermittent eradication of Simulium damnosum Theo. on the Nile from Jinja, Uganda: 1951-1976. Medical Entomology Centenary Symposium Proceedings, 133–4.Google Scholar
Mcgreevy, P. B., Dietze, R., Prata, A. & Hembree, S. C. (1989). Effects of immigration on the prevalence of malaria in rural areas of the Amazon basin of Brazil. Memdrias do Instituto Oswaldo Cruz 84, 485–91.CrossRefGoogle ScholarPubMed
Mcmahon, J. E., Sowa, S. I. C., Maude, G. H. & Kirkwood, B. R. (1988). Onchocerciasis in Sierra Leone. 2. A comparison of forest and savanna villages. Transactions of the Royal Society of Tropical medicine & Hygiene 82, 595600.CrossRefGoogle ScholarPubMed
Mak, J. W., Cheong, W. H., Yen, P. K. F., Lim, P. K. C. & Chan, W. C. (1982). Studies on the epidemiology of subperiodic Brugia malayi in Malaysia: problems in its control. Ada Tropica 39, 237–45.Google ScholarPubMed
Marques, A. C. (1987). Human migration and the spread of malaria in Brazil. Parasitology Today 3, 166–70.CrossRefGoogle Scholar
Marwoto, H. A. & Arbani, P. R. (1991). Forest malaria in Indonesia. In Forest Malaria in Southeast Asia, (ed. Sharma, V. P. & Kondrashin, A. V.) pp. 115–31. New Delhi: WHO/MRC.Google Scholar
Mayrink, W., Williams, P., Coelho, M. V., Dias, M. & Martins, A. V. (1979). Epidemiology of dermal leishmaniasis in the Rio Doce Valley, State of Minas Gerais. Annals of Tropical Medicine & Parasitology 73, 123–37.CrossRefGoogle ScholarPubMed
Meredith, S. E. O., Unnasch, T. R., Karam, M., Piessens, W. F. & Wirth, D. F. (1989). Cloning and characterization of an Onchocerca volvulus specific DNA sequence. Molecular Biochemistry and Parasitology 36, 110.CrossRefGoogle ScholarPubMed
Molyneux, D. H. (1982). Trypanosome, trypanosomiasis and tsetse control: Impact on wildlife and its conservation. Symposium of the Zoological Society of London 50, 2955.Google Scholar
Molyneux, D. H. & Ashford, R. W. (1983). The Biology of Trypanosoma and Leishmania, Parasites of Man and Domestic Animals, London: Taylor & Francis.Google Scholar
Morse, S. & Schluederberg, A. (1990). Emerging viruses: the evolution of viruses and viral diseases. Journal of Infectious Diseases 162, 17.CrossRefGoogle ScholarPubMed
Muro, A. I. S. & Mziray, N. R. (1990). Decline in onchocerciasis in the Eastern Usambara mountains, north east Tanzania, and its possible relationship to deforestation. Acta Leidensia 59, 141–50.Google Scholar
Muro, A. I. S. & Raybould, J. N. (1990). Population decline of Simulium woodi and reduced onchocerciasis transmission at Amani, Tanzania, in relation to deforestation. Acta Leidensia 59, 153–9.Google ScholarPubMed
Murugasu, R., Wang, F., Dissanaike, A. S. (1978). Schistosoma japonicum-type infection in Malaysia–report of the first living case. Transactions of the Royal Society of Tropical Medicine & Hygiene 72, 389–91.CrossRefGoogle ScholarPubMed
Noireau, F., Carme, B., Apembet, J. D. & Gouteux, J. P. (1989). Loa loa and Mansonella persitans filariasis in the Chaillu mountains, Congo: parasitological prevalence. Transactions of the Royal Society of Tropical Medicine & Hygiene 83, 529–34.CrossRefGoogle ScholarPubMed
Noireau, F., Nzoulani, A., Sinda, D. & Itoua, A. (1990). Chrysops silacea and C. dimidiata: fly densities and infection rates with Loa loa in the Chaillu mountains, Congo Republic. Transactions of the Royal Society of Tropical Medicine & Hygiene 84, 153–5.CrossRefGoogle Scholar
Ooi, J. B. (1959). Rural development in tropical areas, with special reference to Malaya. Malayan Journal of Tropical Geography 12, 122.Google Scholar
Partono, F., Maizels, R. M. & PURNOMO, . (1989). Towards a filariasis-free community: evaluation of filariasis control over an eleven year period in Flores, Indonesia. Transactions of the Royal Society of Tropical Medicine & Hygiene 83, 821–6.CrossRefGoogle ScholarPubMed
Persigan, T. P., Hairston, N. G., Jauregui, J. J., Garcia, E. G., Santos, R. T., Santos, B. C. & Besa, A. A. (1958). Studies on Schistosoma japonicum infection in the Philippines. 2. The molluscan host. Bulletin of the World Health Organization 18, 481578.Google Scholar
Philippon, B. (1977). Étude de la transmission d'Onchocerca volvulus (Leukart, 1893) (Nematoda, Onchocercidae) par Simulium damnosum Theobald, 1903 (Diptera, Simuliidae) en Afrique tropicale. Travaux et Documents de l'O.R.S.T.O.M. 63.Google Scholar
Pifano, F. (1960). Aspectos epidemiologicos de la leishmaniasis tegumentaria en la region neotropica con especial referencia a Venezuela. Archives Venezolanos de Medicina Tropical y Parasitologia Medica. 4, 3161.Google Scholar
Pinder, M. (1988). Loa loa–a neglected filaria. Parasitology Today 4, 279–84.CrossRefGoogle Scholar
Post, R. J. & Crosskey, R. w. (1985). The distribution of the Simulium damnosum complex in Sierra Leone and its relation to onchocerciasis. Annals of Tropical Medicine & Parasitology 79, 169–94.CrossRefGoogle ScholarPubMed
Prothero, R. M. (1991). Resettlement and Health: Amazonia in tropical perspective. In A desordem ecologica na amazonica. Universidade Federal do Para (UFPA) Belem, Para Brazil, pp. 161182.Google Scholar
Quillevere, D. (1979). Contribution a l'étude des caracteristiques taxonomiques, bioecologiques et vectrices des membres du complexe Simulium damnosum présente en Cote d'lvoire. Travaux et Documents de L'O.R.S.T.O.M. 109.Google Scholar
Raybould, J. N. (1968). Change and the transmission of onchocerciasis. East African Medical Journal 45, 292–4.Google ScholarPubMed
Raybould, J. N. & White, G. B. (1979). The distribution, bionomics and control of onchocerciasis vectors (Diptera: Simuliidae) in Eastern Africa and the Yemen. Tropical Medicine & Parasitology 30, 505–47.Google ScholarPubMed
Ready, P. D., Lainson, R. & Shaw, J. J. (1983). Leishmaniasis in Brazil: XX. Prevalence of “enzootic rodent leishmaniasis” (Leishmania mexicana amazonensis), and apparent absence of “pian bois” (Le. braziliensis guyanensis), in plantations of introduced tree species and in other non-climax forests in eastern Amazonia. Transactions of the Royal Society of Tropical Medicine & Hygiene 77, 775–85.CrossRefGoogle ScholarPubMed
Remme, J., Dadzie, K. Y., Rolland, A. & Thylefors, B. (1989). Ocular onchocerciasis and intensity of infection in the community. I. West African savanna. Tropical Medicine & Parasitology 40, 340–7.Google ScholarPubMed
Roberts, M. J. (1990). Vectors of onchocerciasis in the Thyolo highlands and other onchocerciasis foci in Malawi. Acta Leidensia 59, 45–7.Google ScholarPubMed
Roche, L. (1975). Forestry and the conservation of plants and animals in the tropics. Forest Ecology and Management 2, 103–22.CrossRefGoogle Scholar
Rodgers, W. A. & Homewood, K. M. (1982). Species richness and endemism in the Usambara mountain forests, Tanzania. Biological Journal of the Linnaean Society 18, 197242.CrossRefGoogle Scholar
Rosenberg, R., Andre, R. G. & Somchit, L. (1990). Highly efficient dry season transmission of malaria in Thailand. Transactions of the Royal Society of Tropical Medicine & Hygiene 84, 22–8.CrossRefGoogle ScholarPubMed
Roundy, R. W. (1980). The influence of vegetational changes on disease patterns. In Conceptual and Methodological Issues in Medical Geography, (ed. Meade, S.), pp. 1637. University of North Carolina Press.Google Scholar
Ryan, L., Vexenat, A., Marsden, P. D., Lainson, R. & Shaw, J. J. (1990). The importance of rapid diagnosis of new cases of cutaneous leishmaniasis in pin pointing the sandfly vector. Transactions of the Royal Society of Tropical Medicine & Hygiene 84, 786.CrossRefGoogle ScholarPubMed
Sasa, M. (1976). Human Filariasis. Baltimore: University Park Press.Google Scholar
Sawyer, D. R. (1986). Malaria on the Amazon frontier: economic and social aspects of transmission and control. Southeast Asian Journal of Tropical Medicine and Public Health 17, 342–5.Google ScholarPubMed
Schofield, C. J. (1988). Biosystematics of the Triatominae. In Biosystematics of Haematophagous Insects. Systematics Association Special Vol. 37 (ed. Service, M. W.), pp. 285312. Oxford: Oxford University Press.Google Scholar
Schneider, S. H. (1989). Global Warming: Are we entering the Greenhouse Century? The Lutterworth Press, Cambridge, pp. 343.Google Scholar
Sharma, V. P., Malhotra, M. S. & Mani, T. R. (1984). Entomological and epidemiological study of malaria in Terai district Nainital, U.P. In Facets of Environmental Problems, Five Case Studies, (ed. Krishnamurthy, C. R.), pp. 3546. New Delhi: Indian National Science Academy.Google Scholar
Shelley, A. J. (1988). Vector aspects of the epidemiology of onchocerciasis in Latin America. Annual Review of Entomology 33, 337–66.CrossRefGoogle ScholarPubMed
Shelley, A. J. & Arzube, M. (1985). Studies on the biology of Simuliidae (Diptera) at the Santiago onchocerciasis focus in Ecuador, with special reference to the vectors and disease transmission. Transactions of the Royal Society of Tropical Medicine & Hygiene 79, 328–38.CrossRefGoogle Scholar
Simarro, p. p., Sima, F. o. & Mir, M. (1990). Urban epidemiology of Schistosoma intercalatum in the city of Bata, Equatorial Guinea. Tropical Medicine & Parasitology 41, 254–6.Google ScholarPubMed
Singh, Y. P. & Tham, A. (1990). Case history of malaria control through the application of environmental management in Malaysia. WHO/WBC/88.960.Google Scholar
Smith, N. J. H. (1981). Colonization lessons from a tropical forest. Science 214, 755–61.CrossRefGoogle ScholarPubMed
Soper, F. L. & Wilson, D. B. (1943). Anopheles gambiae in Brazil 1930-1940. (New York, Rockefeller Foundation.)Google Scholar
Southgate, V. R., Wijk, H. B., Van, & Wright, C. A. (1976). Schistosomiasis in Loum, Cameroun; Schistosoma haematobium S. intercalatum, and their natural hybrid. Zeitschrift für Parasitenkunde 49, 145–59.CrossRefGoogle ScholarPubMed
Suvannadabba, S. (1991). Deforestation for agriculture and its impact on malaria in Southern Thailand. In Forest Malaria in Southeast Asia, (ed. Sharma, V. P. & Kondrashin, A. V.), pp. 221226. New Delhi: WHO/MRC.Google Scholar
Vajime, C. & Quillevere, D. (1978). The distribution of the Simulium damnosum complex in West Africa with particular reference to the Onchocerciasis Control programme area. Tropical Medicine and Parasitology 29, 473–82.Google Scholar
Vexenet, J. A., Barretto, A. C., Cuba, C. C. & Marsden, P. D. (1986). Caracteristicas epidemiologicos de leishmaniose tegumentar americana em uma regiao endemica do Estado de Bahia. III. Fauna flebotominica. Memórias do Instituto Oswaldo Cruz 81, 293301.CrossRefGoogle Scholar
Vosti, S. A. (1990). Malaria among gold miners in southern Para, Brazil: estimates of determinants and individual costs. Social Science and Medicine 30, 1097–105.CrossRefGoogle ScholarPubMed
Walsh, J. F. (1990). Review of vector control prior to the OCP. Acta Leidensia 59, 6178.Google Scholar
Walsh, J. F., Philippon, B., Henderickx, J. E. E. & Kurtak, D. C. (1987). Entomological aspects and results of the Onchocerciasis Control Programme. Tropical Medicine and Parasitology 38, 5760.Google ScholarPubMed
Walton, B. C. & Valverde, L. (1979). Racial difference in espundia. Annals of Tropical Medicine & Parasitology 73, 23–4.CrossRefGoogle ScholarPubMed
Ward, R. D. (1977) New World leishmaniasis: a review of the epidemiological changes in the last three decades. In Proceedings of XV International Congress of Entomology, pp. 505–22. Washington: Entomological Society of America.Google Scholar
Ward, R. D., Shaw, J. J., Lainson, R. & Fraiha, H. (1973). Leishmaniasis in Brazil: VIII. Observations on the phlebotomine fauna of an area highly endemic for cutaneous leishmaniasis, in the Serra dos Carajas, Para State. Transactions of the Royal Society of Tropical Medicine & Hygiene 67, 174–83.CrossRefGoogle Scholar
Wegesa, P. & Chimtawi, M. B. (1971). The impact of increased agricultural activities on the infection rates and densities in an endemic area of onchocerciasis. East African Medical Journal 48, 433–7.Google Scholar
Whitlaw, J. T. & Chaniotis, B. N. (1978). Palm trees and Chagas’ disease in panama. American Journal of Tropical Medicine & Hygiene 27, 873–81.CrossRefGoogle ScholarPubMed
WHO. (1984). WHO Expert Committee on Lymphatic filariasis: fourth report. WHO Technical Report Series 702.Google Scholar
WHO.(1987). WHO Expert Committee on Onchocerciasis: third report. WHO Technical Report Series 752.Google Scholar
WHO. (1990). Tropical Disease in 1990. Geneva: World Health Organization.Google Scholar
WHO. (1992). WHO Expert Committee on Lymphatic filariasis: fifth report. WHO Technical Report Series 821.Google Scholar
Wijk, H. B. Van (1969). Infection with Schistosoma intercalatum in Mungo Department, Cameroun. Tropical and Geographical Medicine 21, 362–74.Google Scholar
Williams, P. (1965). Observations of the phlebotomine sandflies of British Honduras. Annals of Tropical Medicine & Hygiene 59, 393404.Google ScholarPubMed
Witte, J. (1992). Deforestation in Zaire. The Ecologist 22, 5864.Google Scholar
Wright, C. A., Southgate, V. R. & Knowles, R. J. (1972). What is Schistosoma intercalatum Fisher, 1934? Transactions of the Royal Society of Tropical Medicine & Hygiene 66, 2864.CrossRefGoogle ScholarPubMed
Wright, C. A., Southgate, V. R., Wijk, H. B. Van & Moore, P. J. (1974). Hybrids between Schistosoma haematobium and S. intercalatum in Cameroun. Transactions of the Royal Society of Tropical Medicine & Hygiene 68, 413–4.CrossRefGoogle Scholar
Yoshida, E. L. A., Correa, F. M. A., Marques, S. A., Stolf, H. O., Dillon, N. L., Momen, H. & Grimaldi, G. (1990). Human, canine and equine (Equus caballus) leishmaniasis due to Leishmania braziliensis insect vectors. Annual Review of Entomology 26, ( = L. braziliensis braziliensis) in the south-west region 101-33. of São Paulo State, Brazil. Memórias do Instituto Oswaldo Cruz 85, 133–4.CrossRefGoogle Scholar
Zeledon, R., & Rabinovich, J. E. (1981). Chagas’ disease: an ecological appraisal with special emphasis on the insect vectors. Annual Review of Entomology 26, 101–33.CrossRefGoogle ScholarPubMed
Zeledon, R., Solano, R., Burstin, L. & Swartzwelder, J.C. (1975). Epidemiological pattern of Chargas’ disease in an endemic area of Costa Rica. American Journal of Tropical Medicine & Hygiene 24, 214–25.CrossRefGoogle Scholar