Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T00:06:28.063Z Has data issue: false hasContentIssue false

Experimental evidence of genetic determinism in high susceptibility to intestinal pinworm infection in mice: a hybrid zone model

Published online by Cambridge University Press:  06 April 2009

C. Moulia
Affiliation:
Laboratoire de Parasitologic Comparée (URA 698, CNRS), Université de Montpellier II, Place E. Bataillon, 34 095 Montepellier cédex 5, France
N. Le Brun
Affiliation:
Laboratoire de Parasitologic Comparée (URA 698, CNRS), Université de Montpellier II, Place E. Bataillon, 34 095 Montepellier cédex 5, France
J. Dallas
Affiliation:
Equipe ‘Génome et Populations’ (URA 1493, CNRS), Université de Montpellier II, Place E. Bataillon, 34 095 Montepellier cédex 5, France
A. Orth
Affiliation:
Equipe ‘Génome et Populations’ (URA 1493, CNRS), Université de Montpellier II, Place E. Bataillon, 34 095 Montepellier cédex 5, France
F. Renaud
Affiliation:
Laboratoire de Parasitologic Comparée (URA 698, CNRS), Université de Montpellier II, Place E. Bataillon, 34 095 Montepellier cédex 5, France

Summary

In the hybrid zone of the two mouse subspecies Mus musculus musculus and Mus musculus domesticus, mice with hybrid genotypes harbour, on the average, more helminth parasites (cestodes and nematodes) than mice of the two parental taxa. In order to determine the roles played by genetic parameters in this phenomenon, mice with recombined and parental genotypes were experimentally infected with the intestinal pinworm Aspiculuris tetraptera, a natural parasite of the house mouse. The results showed that the high susceptibility of the hybrid zone mice is genetically determined. In addition, this study shows the occurrence of variability among resistant parental populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. & May, R. M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219–47.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1982). The population dynamics and control of human helminth infections. Nature, London 297, 557–63.CrossRefGoogle ScholarPubMed
Anya, A. O. (1966). Studies on the biology of some oxyurid nematodes. II. The hatching of eggs and development of Aspiculuris tetraptera Schulz, within the host. Journal of Helminthology 40, 261–8.CrossRefGoogle ScholarPubMed
Barton, N. H. & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics 16, 113–48.CrossRefGoogle Scholar
Behnke, J. M. (1975). Immune expulsion of the nematode Aspiculuris tetraptera from mice given primary and challenge infections. International Journal for Parasitology 5, 511–15.CrossRefGoogle ScholarPubMed
Bonhomme, F., Catalan, J., Gerasimov, S., Orsini, P. & Thaler, L. (1983). Le complexe d'espèces du genre Mus en Europe centrale et orientale. Zeitschrift für Säugetierkunde 48, 7885.Google Scholar
Boursot, P., Bonhomme, F., Britton-Davidian, J., Catalan, J., Yonekawa, H., Orsini, P., Gerasiimov, S. & Thaler, L. (1984). Introgression différentielle des génomes nucléaires et mitochondriaux chez deux semi-espèces de souris. Comptes Rendus de l’Académie des Sciences de Paris 299, 365–70.Google Scholar
Charlesworth, B. (1987). The heritability of fitness. In Sexual Selection: Testing the Alternatives (ed. Bradbury, J. W. & Anderson, M. B.), pp. 2140. New York: John Wiley & Sons.Google Scholar
Coustau, C., Renaud, F., Maillard, C., Pasteur, N. & Delay, B. (1991). Differential susceptibility to a trematode parasite among genotypes of the Mytilus edulis/galloprovincialis complex. Genetical Research 57, 207–12.CrossRefGoogle ScholarPubMed
Crofton, H. D. (1971 a). A quantitative approach to parasitism. Parasitology 63, 179–93.CrossRefGoogle Scholar
Crofton, H. D. (1971 b). A model of host-parasite relationships. Parasitology 63, 343–64.CrossRefGoogle Scholar
Falconer, D. S. (1980). Introduction to Quantitative Genetics, 2nd Edn.London: Longman.Google Scholar
Hamilton, W. D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites. Science 218, 384–7.CrossRefGoogle Scholar
Hassel, M. P. & May, R. M. (1984). From individual behaviour to population dynamics. In Behavioural Ecology (ed. Sibly, R. & Smith, R.), pp. 332. Oxford: Blackwell.Google Scholar
Hewitt, G. M. (1988). Hybrid zones-natural laboratories for evolutionary studies. Trends in Ecology and Evolution 3, 158–67.CrossRefGoogle ScholarPubMed
Hunt, W. G. & Selander, R. K. (1973). Biochemical genetics of hybridisation in European house mouse. Heredity 31, 1133.CrossRefGoogle Scholar
Klein, J. (1988). Debate about three pages. Immunogenetics 28, 67–8.CrossRefGoogle Scholar
Kruskal, W. H. & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47, 583621.CrossRefGoogle Scholar
Le Brun, N., Renaud, F., Berrebi, P. & Lambert, L. (1991). Hybrid zones and host–parasite relationships: effect on the evolution of parasitic specificity. Evolution (in the Press).Google Scholar
May, R. M. (1977). Dynamical aspects of host–parasite associations: Crofton's model revisited. Parasitology 75, 259–76.CrossRefGoogle Scholar
May, R. M. (1985). Host–parasite associations: their population biology and population genetics. In Ecology and Genetics of Host–Parasite Interactions (ed. Rollinson, D. & Anderson, R. M.), Linnean Society Symposium Series, vol. 11, pp. 243262. London: Academic Press.Google Scholar
May, R. M. & Anderson, R. M. (1982). Coevolution of hosts and parasites. Parasitology 85, 411–26.Google Scholar
Mitchison, N. A. (1990). The evolution of acquired immunity to parasites. Parasitology 100 (Suppl.), S27S34.CrossRefGoogle ScholarPubMed
Moulia, C., Aussel, J. P., Bonhomme, F., Nielsen, J. T. & Renaud, F. (1991). Wormy mice in a hybrid zone: a genetic control of susceptibility to parasite infection. Journal of Evolutionary Biology 4, 679–87.CrossRefGoogle Scholar
Noether, G. E. (1976). Introduction to Statistics. A Nonparametric Approach, 2nd Edn.Boston: Houghton Mifflin Co.Google Scholar
Philpot, F. (1924). Notes on the eggs and early development of some species of Oxyuridæ. Journal of Helminthology 2, 239–52.CrossRefGoogle Scholar
Ratcliffe, N. A. (1989). The biological significance of immunity. Developmental and Comparative Immunology 13, 273–83.CrossRefGoogle ScholarPubMed
Read, A. F. (1990). Parasites and the evolution of host sexual behaviour. In Parasitism and Host Behaviour (ed. Barnard, C. J. & Behnke, J. M.) pp. 117157. London: Taylor & Francis.Google Scholar
Read, A. F. & Schrag, S. J. (1991). The evolution of virulence: experimental evidence. Parasitology Today 7, 296–7.CrossRefGoogle ScholarPubMed
Sage, R. D., Heyneman, D., Lim, K. C. & Wilson, A. C. (1986 a). Wormy mice in a hybrid zone. Nature, London 324, 60–3.CrossRefGoogle Scholar
Sage, R. D., Whitney, J. B. & Wilson, A. C. (1986 a). Genetic analysis of a hybrid zone between Domesticus and Musculus mice (Mus musculus complex): haemoglobin polymorphism. In Current Topics in Microbiology and Immunology, pp. 7885. Berlin and Heidelberg: Springer Verlag.Google Scholar
Stahl, w. (1966). Experimental aspiculuriasis. I. Resistance to superinfection. Experimental Parasitology 18, 109–15.CrossRefGoogle ScholarPubMed
Szymura, J. M. & Barton, N. H. (1986). Genetic analysis of a hybrid zone between fire-bellied toads. Evolution 40, 1141–59.Google ScholarPubMed
Vanlerberghe, F., Dod, B., Boursot, P., Bellis, M. & Bonhomme, F. (1986). Absence of Y-chromosome introgression across the hybrid zone between Mus musculus domesticus and Mus musculus musculus. Genetical Research 48, 191–7.CrossRefGoogle ScholarPubMed
Vanlerberghe, F., Boursot, P., Catalan, J., Gerasimov, S., Bonhomme, B., Botev, A. & Thaler, L. (1988 a). Analyse génétique de la zone d'hybridation entre les deux sous-espèces de souris Mus musculus domesticus et Mus musculus musculus en Bulgarie. Genome 30, 427–37.CrossRefGoogle Scholar
Vanlerberghe, F., Boursot, P., Nielsen, J. T. & Bonhomme, F. (1988 b). A steep cline for mitochondrial DNA in Danish mice. Genetical Research 52, 185–93.CrossRefGoogle ScholarPubMed
Wakeland, E. K., Boehme, S. & She, J. X. (1990). The generation and maintenance of MHC Class II polymorphism in rodents. Immunological Reviews 113, 207–26.CrossRefGoogle ScholarPubMed
Wilson, A. (1988). More on the molecular biology of the gene. Immunogenetics 28, 68–9.CrossRefGoogle Scholar