Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T15:55:35.275Z Has data issue: false hasContentIssue false

Temperature-dissipation measurements in a turbulent boundary layer

Published online by Cambridge University Press:  21 April 2006

L. V. Krishnamoorthy
Affiliation:
Department of Mechanical Engineering, University of Newcastle, NSW 2308, Australia
R. A. Antonia
Affiliation:
Department of Mechanical Engineering, University of Newcastle, NSW 2308, Australia

Abstract

The three components of the average temperature dissipation have been measured using a pair of parallel cold wires in an approximately self-preserving turbulent boundary layer. The mean square value of θ,x the temperature derivative in the longitudinal direction, is determined mainly by the use of Taylor's hypothesis, following direct verification of this hypothesis at a few locations in the flow. Mean square values of θ,y and θ,z, the temperature derivatives in directions normal to the flow, were estimated mainly from the curvature of spatial temperature autocorrelations. In the outer layer, the measurements indicate that $\overline{\theta^2}_{,z} > \overline{\theta^2}_{,y} > \overline{\theta^2}_{,x}$, and the resulting distribution for dissipation leads to a good closure of the $\frac{1}{2}\overline{\theta^2}$ budget. In the near-wall region the measurements indicate that $\overline{\theta^2}_{,y} > \overline{\theta^2}_{,z} > \overline{\theta^2}_{,x}$. The ratios $\overline{\theta^2}_{,y}/\overline{\theta^2}_{,x} $ and $\overline{\theta^2}_{,z}/\overline{\theta^2}_{,x}$ are as large as 13 and 7 respectively at y+ = 12, underlining the strong anisotropy in this region. The behaviour of the turbulent diffusion, estimated by difference, provides reasonable support for the accuracy of the near-wall temperature-dissipation measurements. Using existing data of near-wall distributions of the turbulent energy and of its dissipation rate, the timescale for the turbulent-energy dissipation is found to be approximately equal to that for the temperature dissipation.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. 1980 Intl J. Heat Mass Transfer, 23, 906.
Antonia, R. A. & Browne, L. W. B. 1983 J. Fluid Mech. 134, 67.
Antonia, R. A., Browne, L. W. B., Britz, D. & Chambers, A. J. 1984 Phys. Fluids 27, 87.
Antonia, R. A., Danh, H. Q. & Prabhu, A. 1977 J. Fluid Mech. 80, 153.
Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1980 Phys. Fluids 23, 695.
Bernard, P. S. & Berger, B. S. 1984 AIAA J. 22, 306.
Blom, J. 1970 Ph.D. thesis, Technological University, Eindhoven.
Browne, L. W. B., Antonia, R. A. & Chambers, A. J. 1983a Boundary-Layer Met. 27, 129.
Browne, L. W. B., Antonia, R. A. & Rajagopalan, S. 1983b Phys. Fluids 26, 1222.
Cantwell, B. J. 1981 Ann. Rev. Fluid Mech. 13, 457.
Corrsin, S. 1953 Proc. 1st Iowa Symp. on Thermodynamics, State University of Iowa, p. 5.
Fulachier, L., Elena, M., Verollet, E. & Dumas, R. 1982 In Structure of Turbulence in Heat and Mass Transfer (ed. Z. P. Zaric), p. 193. Hemisphere.
Hinze, O. 1959 Turbulence: Introduction to its Mechanism and Theory. McGraw-Hill.
Iritani, Y., Kasagi, N. & Hirata, M. 1985 In Turbulent Shear Flows (ed. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw), vol. 4, p. 223. Springer.
Klebanoff, P. S. 1954 NACA Rep. TN–1247.
Kreplin, H. P. & Eckelmann, H. 1979 Phys. Fluids 22, 1233.
Laufer, J. 1954 NACA Rep. TR–1174.
Launder, B. E. 1976 Topics in Applied Physics 12, 231.
Launder, B. E. 1984 Intl J. Heat Mass Transfer 27, 1485.
Launder, B. E. & Spalding, D. B. 1974 Comp. Meth. Appl. Mech. Engng. 3, 269.
Lecordier, J. C., Dupont, A., Gajan, P. & Paranthoen, P. 1984 J. Phys. E: Sci. Instrum. 17, 307
Mestayer, P. & Chambaud, P. 1979 Boundary-Layer Met. 16, 311.
Nagano, Y. & Hishida, M. 1985 Proc. Fifth Turbulent Shear Flow Conference, Cornell University, p. 1419.
Rey, C. & Béguier, C. 1977 DISA Information 21, 11.
Rose, W. G. 1966 J. Fluid Mech. 25, 97.
Shih, T.-H. & Lumley, J. L. 1986 Phys. Fluids 29, 971.
Smith, C. R. & Metzler, S. P. 1983 J. Fluid Mech. 129, 27.
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Phys. Fluids 20, 1238.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow, 1st ed. Cambridge University Press.
Verollet, E. 1972 Ph.D. thesis, Université d'Aix-Marseille II (also Rapport CEA-R–4872, CEN, Saclay, 1977).
Wyngaard, J. C. 1971 J. Fluid Mech. 48, 763.