Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T05:41:24.925Z Has data issue: false hasContentIssue false

Velocity distribution function and correlations in a granular Poiseuille flow

Published online by Cambridge University Press:  06 May 2010

MEHEBOOB ALAM*
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
V. K. CHIKKADI
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
*
Email address for correspondence: meheboob@jncasr.ac.in

Abstract

Probability distribution functions of fluctuation velocities (P(ux) and P(uy), where ux and uy are the fluctuation velocities in the x- and y-directions, respectively; the gravity is acting along the periodic x-direction and the flow is bounded by two walls parallel to the y-direction) and the density and the spatial velocity correlations are studied using event-driven simulations for an inelastic smooth hard disk system undergoing gravity-driven granular Poiseuille flow (GPF). It is shown that for GPF with smooth and/or perfectly rough walls the Maxwellian/Gaussian is the leading-order distribution over a wide range of densities in the quasi-elastic limit, which is a surprising result, especially for a dilute granular gas for which the Knudsen number belongs to the transitional flow regime. The signature of wall-roughness-induced dissipation mainly shows up in the P(ux) distribution in the form of a sharp peak for negative velocities in the near-wall region. Both P(ux) and P(uy) distributions become asymmetric with increasing dissipation at any density, and the emergence of density waves, which appear in the form of sinuous wave/slug at low-to-moderate values of mean density, makes these asymmetries stronger, especially in the presence of a slug. At high densities, the flow degenerates into a dense plug (where the density approaches its maximum limit and the shear rate is negligibly small) around the channel centreline and two shear layers (where the shear rate is high and the density is low) near the walls. The distribution functions within the shear layer follow the characteristics of those at moderate mean densities. Within the dense plug, the high-velocity tails of both P(ux) and P(uy) appear to undergo a transition from Gaussian in the quasi-elastic limit to power-law distributions at large inelasticity of particle collisions. For dense flows, it is shown that although the density correlations play a significant role in enhancing the velocity correlations when the collisions are sufficiently inelastic, they do not induce velocity correlations when the collisions are quasi-elastic for which the distribution functions are close to Gaussian. The combined effect of enhanced density and velocity correlations around the channel centreline with increasing inelastic dissipation seems to be responsible for the emergence of non-Gaussian high-velocity tails of distribution functions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M., Chikkadi, V. & Gupta, V. K. 2010 Density waves and the effect of wall roughness in granular Poiseuille flow: simulation and linear stability. Eur. Phys. J. ST (in press).CrossRefGoogle Scholar
Alam, M. & Luding, S. 2003 First normal stress difference and crystallization in a dense sheared granular fluid. Phys. Fluids 15, 2298.CrossRefGoogle Scholar
Alam, M. & Luding, S. 2005 Energy noequipartition, rheology and microstructure in sheared bidisperse granular mixtures. Phys. Fluids 17, 063303.CrossRefGoogle Scholar
Alam, M., Willits, J. T., Aranson, B. Ö. & Luding, S. 2002 Kinetic theory of a binary mixture of nearly elastic disks with size and mass disparity. Phys. Fluids 14, 4085.CrossRefGoogle Scholar
Aranson, I. & Tsimring, L. S. 2006 Patterns and collective behaviour in granular media: theoretical concepts. Rev. Mod. Phys. 78, 1641.CrossRefGoogle Scholar
Baran, O., Ertas, D., Halsey, T. C., Grest, G. S. & Lechman, J. B. 2006 Velocity correlations in dense gravity-driven granular chute flow. Phys. Rev. E 74, 051302.CrossRefGoogle ScholarPubMed
Baxter, G. W. & Olafsen, J. S. 2003 Kinetics: Gaussian statistics in granular gases. Nature 425, 680.CrossRefGoogle ScholarPubMed
Blair, D. & Kudrolli, A. 2001 Velocity correlations in dense granular gases. Phys. Rev. E 64, 050301.CrossRefGoogle ScholarPubMed
Brey, J. J., Dufty, J. W. & Santos, A. 1999 Kinetic models for granular flow. J. Stat. Phys. 97, 281.CrossRefGoogle Scholar
Brilliantov, N. & Pöschel, T. 2004 Kinetic Theory of Granular Gases. Oxford University Press.CrossRefGoogle Scholar
Campbell, C. S. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22, 57.CrossRefGoogle Scholar
Cafiero, R., Luding, S. & Herrmann, H. J. 2000 Two-dimensional granular gas of inelastic spheres with multiplicative driving. Phys. Rev. Lett. 84, 6014.CrossRefGoogle ScholarPubMed
Chikkadi, V. & Alam, M. 2009 Slip velocity and stresses in granular Poiseuille flow via event-driven simulation. Phys. Rev. E 80, 021303.CrossRefGoogle ScholarPubMed
Esipov, S. & Pöschel, T. 1997 The granular phase diagram. J. Stat. Phys. 86, 1385.CrossRefGoogle Scholar
Garzo, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895.CrossRefGoogle ScholarPubMed
Gayen, B. & Alam, M. 2008 Orientation correlation and distribution functions in uniform shear flow of a dilute granular gas. Phys. Rev. Lett. 100, 068002.CrossRefGoogle ScholarPubMed
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267.CrossRefGoogle Scholar
Goldhirsch, I. & Tan, M.-L. 1996 The single particle distribution function for rapid granular shear flows of smooth inelastic disks. Phys. Fluids 8, 1752.CrossRefGoogle Scholar
Haff, P. K. 1983 Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401.CrossRefGoogle Scholar
Herrmann, H. J. & Luding, S. 1998 Modeling granular media on the computer. Continuum Mech. Therm. 10, 188.CrossRefGoogle Scholar
Hui, K., Haff, P. K., Ungar, J. E. & Jackson, R. 1984 Boundary conditions for high-shear grain flows. J. Fluid Mech. 145, 223.CrossRefGoogle Scholar
Jenkins, J. T. & Richman, M. W. 1986 Boundary conditions for plane flows of smooth, nearly elastic, circular disks. J. Fluid Mech. 171, 53.CrossRefGoogle Scholar
Jenkins, J. T. & Savage, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187.CrossRefGoogle Scholar
Karniadakis, G. & Beshok, A. 2001 Micro Flows: Fundamentals and Simulation. Springer.Google Scholar
Kumaran, V. 2006 Granular flow of rough particles in the high-Knudsen-number limit. J. Fluid Mech. 561, 43.CrossRefGoogle Scholar
Liss, E., Conway, S. L. & Glasser, B. J. 2002 Density waves in gravity-driven granular flow through a channel. Phys. Fluids 14, 3309.CrossRefGoogle Scholar
Losert, W., Cooper, D., Delour, J., Kudrolli, A. & Gollub, J. P. 1999 Velocity statistics in vibrated granular media. Chaos 9, 682.CrossRefGoogle Scholar
Lubachevsky, B. 1991 How to simulate billiards and similar systems. J. Comp. Phys. 94, 255.CrossRefGoogle Scholar
Lun, C. K. K. 1991 Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539.CrossRefGoogle Scholar
Mitarai, N., Hayakawa, H. & Nakanishi, H. 2002 Collisional granular flow as a micropolar fluid. Phys. Rev. Lett. 88, 174301.CrossRefGoogle ScholarPubMed
Moka, S. & Nott, P. R. 2005 Statistics of particle velocities in dense granular flows. Phys. Rev. Lett. 95, 068003.CrossRefGoogle ScholarPubMed
Montanero, J. M. & Santos, A. 2000 Computer simulation of uniformly heated granular fluids. Gran. Matter 2, 53.CrossRefGoogle Scholar
Moon, S. J., Shattuck, M. D. & Swift, J. B. 2001 Velocity distributions and correlations in homogeneously heated granular media. Phys. Rev. E 64, 031303.CrossRefGoogle ScholarPubMed
Natarajan, V. V. R., Hunt, M. L. & Taylor, E. D. 1995 Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. J. Fluid Mech. 304, 1.CrossRefGoogle Scholar
van Noije, T. P. C. & Ernst, M. H. 1998 Velocity distributions in homogeneous granular fluids: the free and the heated case. Gran. Matter 1, 52.CrossRefGoogle Scholar
Pouliquen, O. 2004 Velocity correlations in dense granular flows. Phys. Rev. Lett. 93, 248001.CrossRefGoogle ScholarPubMed
Prevost, A., Egolf, D. A. & Urbach, J. S. 2002 Forcing and velocity correlations in a vibrated granular monolayer. Phys. Rev. Lett. 89, 084301.CrossRefGoogle Scholar
Puglisi, A., Loreto, V., Marconi, U., Petri, A. & Vulpiani, A. 1998 Clustering and non-Gaussian behaviour in granular matter. Phys. Rev. Lett. 81, 3848.CrossRefGoogle Scholar
Rouyer, F. & Menon, N. 2000 Velocity fluctuations in a homogeneous 2D granular gas in steady state. Phys. Rev. Lett. 85, 3676.CrossRefGoogle Scholar
Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid shear flows of smooth, inelastic spheres, to Burnett order. J. Fluid Mech. 361, 41.CrossRefGoogle Scholar
Taguchi, Y. & Takayasu, H. 1995 Power-law velocity fluctuations due to inelastic collisions in numerically simulated vibrated bed of powder. Europhys. Lett. 30, 499.CrossRefGoogle Scholar
Tij, M. & Santos, A. 2004 Poiseuille flow in a heated granular gas. J. Stat. Phys. 117, 901.CrossRefGoogle Scholar
Vijayakumar, K. C. & Alam, M. 2007 Velocity distribution and the effect of wall roughness in granular Poiseuille flow. Phys. Rev. E 75, 051306.CrossRefGoogle ScholarPubMed
van Zon, J. S. & MacKintosh, F. C. 2004 Velocity distributions in dissipative granular gases. Phys. Rev. Lett. 93, 038001.CrossRefGoogle ScholarPubMed