Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T05:25:22.341Z Has data issue: false hasContentIssue false

Shock emission from collapsing gas bubbles

Published online by Cambridge University Press:  08 March 2010

S. J. SHAW
Affiliation:
Department of Chemical Engineering, Imperial College London SW7 2AZ, UK
P. D. M. SPELT*
Affiliation:
Department of Chemical Engineering, Imperial College London SW7 2AZ, UK
*
Email address for correspondence: p.spelt@imperial.ac.uk

Abstract

The origin and the resultant properties of the strong pulses or shocks emitted by collapsing gas bubbles into a surrounding liquid are investigated numerically. The compressible flow in both phases is resolved. Results are presented for micron- and millimetre-sized bubbles and for bubble collapse triggered either by an acoustic driving or by an initially imposed spherical shock in the liquid. The origin of the diverging shocks is investigated, and the results of a parametric study for the acoustically driven collapse reveal a predominant linear dependence of the shock strength and width on the maximum bubble radius. The results compare favourably with experimental data and agree well with acoustic theory in the limit of weak forcing.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Xi'an Jiaotong-Liverpool University, 111 Ren Ai Road, Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China.

References

REFERENCES

Brennen, C. E. 2002 Fission of collapsing cavitation bubbles. J. Fluid Mech. 472, 153166.CrossRefGoogle Scholar
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425484.CrossRefGoogle Scholar
Evans, A. K. 1996 Instability of converging shock waves and sonoluminescence Phys. Rev. E 54, 50045011.CrossRefGoogle ScholarPubMed
Fedkiw, R. P. 2002 Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid methods. J. Comp. Phys. 175, 200224.CrossRefGoogle Scholar
Fedkiw, R. P., Marquina, A. & Merriman, B. 1999 An isobaric fix for the overheating problem in multimaterial compressible flows. J. Comp. Phys. 148, 545578.CrossRefGoogle Scholar
Gilmore, F. R. 1952 The growth or collapse of a spherical bubble in a viscous compressible liquid. ONR Rep. No. 26-4.Google Scholar
Hickling, R. & Plesset, M. S. 1964 Collapse and rebound of a spherical bubble in water. Phys. Fluids 7, 714.CrossRefGoogle Scholar
Holzfuss, J., Rüggeberg, M. & Billo, A. 1998 Shock wave emissions of a sonoluminescing bubble. Phys. Rev. Lett. 81, 54345437.CrossRefGoogle Scholar
Holt, R. G. & Gaitan, D. F. 1996 Observation of stability boundaries in the parameter space of single bubble sonoluminescence. Phys. Rev. Lett. 77, 37913794.CrossRefGoogle ScholarPubMed
Hu, X. Y., Khoo, B. C., Adams, N. A. & Huang, F. L. 2006 A conservative interface method for compressible flows. J. Comp. Phys. 219, 553578.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Karng, S. W., Lee, Y. P., Kim, K.-Y. & Kwak, H.-Y. 2003 Implosion mechanism for a sonoluminescing gas bubble. J. Korean Phys. Soc. 43, 135144.Google Scholar
Knapp, R. T., Daily, J. W. & Hammitt, F. G. 1970 Cavitation. McGraw-Hill.Google Scholar
Lauterborn, W., Kurz, T., Schenke, C., Lindau, O. & Wolfrum, B. 2001 Laser-induced bubbles in cavitation research. In IUTAM Symposium on Free Surface Flows (ed. King, A. C. & Shikhmurzaev, Y. D.), pp. 169176. Kluwer.CrossRefGoogle Scholar
Lighthill, J. 1979 Waves in Fluids. Cambridge University Press.Google Scholar
Lin, H., Storey, B. D. & Szeri, A. J. 2002 Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh–Plesset equation. J. Fluid Mech. 452, 145162.CrossRefGoogle Scholar
Lohse, D., Brenner, M. P., Dupont, T. F., Hilgenfeldt, S. & Johnston, B. 1997 Sonoluminescing air bubbles rectify argon. Phys. Rev. Lett. 78, 13591362.CrossRefGoogle Scholar
Matula, T. J., Hallaj, I. M., Cleveland, R. O., Crum, L. A., Moss, W. C. & Roy, R. A. 1998 The acoustic emissions from single-bubble sonoluminescence. J. Acoust. Soc. Am. 103, 13771382.CrossRefGoogle Scholar
Matula, T. J., Hilmo, P. R., Storey, B. D. & Szeri, A. J. 2002 Radial response of individual bubbles subjected to shock wave lithotripsy pulse in vitro. Phys. Fluids 14, 913921.CrossRefGoogle Scholar
Moss, W. C., Clarke, D. B., White, J. W. & Young, D. A. 1994 Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence. Phys. Fluids 6, 29792985.CrossRefGoogle Scholar
Nagrath, S., Jansen, K., Lahey, R. T. Jr. & Akhatov, I. 2006 Hydrodynamic simulation of air bubble implosion using a level set approach. J. Comp. Phys. 215, 98132.CrossRefGoogle Scholar
Ohl, C.-D., Kurz, T., Geisler, R., Lindau, O. & Lauterborn, W. 1999 Bubble dynamics, shock waves and sonoluminescence. Phil. Trans. A 357, 269294.CrossRefGoogle Scholar
Pecha, R. & Gompf, B. 2000 Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys. Rev. Lett. 84, 13281330.CrossRefGoogle ScholarPubMed
Prosperetti, A. & Hao, Y. 1999 Modelling of spherical gas bubble oscillations and sonoluminescence. Phil. Trans. R. Soc. Lond. A 357, 203223.CrossRefGoogle Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.CrossRefGoogle Scholar
Vuong, V. Q. & Szeri, A. J. 1996 Sonoluminescence and diffusive transport. Phys. Fluids 8, 23542364.CrossRefGoogle Scholar
Vuong, V. Q., Szeri, A. J. & Young, D. A. 1999 Shock formation within sonoluminescence bubbles. Phys. Fluids 11, 1017.CrossRefGoogle Scholar
Ward, B. & Emmony, D. C. 1992 Interferometric studies of pressures developed in a liquid during infra-red-laser-induced cavitation-bubble oscillation. Infrared Phys. 32, 489515.CrossRefGoogle Scholar
Weninger, K. R., Barber, B. P. & Putterman, S. J. 1997 Pulsed Mie scattering measurements of the collapse of a sonoluminescing bubble. Phys. Rev. Lett. 78, 17991802.CrossRefGoogle Scholar

Shaw and Spelt supplementary material

Movie 1. Shock wave formation after a 1mm radius air bubble collapses in water under atmospheric conditions due to the impact of an incoming 107Pa spherical shock wave in the surrounding liquid (corresponds to Fig.5).

Download Shaw and Spelt supplementary material(Video)
Video 820.2 KB