Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T02:17:24.363Z Has data issue: false hasContentIssue false

Saltating particles in a turbulent boundary layer: experiment and theory

Published online by Cambridge University Press:  14 April 2009

M. CREYSSELS
Affiliation:
IPR, Université de Rennes 1, CNRS UMR 6251, Campus Beaulieu, 35042 Rennes, France
P. DUPONT
Affiliation:
LGCGM, INSA de Rennes, Campus Beaulieu, 35043 Rennes, France
A. OULD EL MOCTAR
Affiliation:
Thermocinétique, Polytech. Nantes, CNRS UMR 6607, 44306 Nantes, France
A. VALANCE*
Affiliation:
IPR, Université de Rennes 1, CNRS UMR 6251, Campus Beaulieu, 35042 Rennes, France
I. CANTAT
Affiliation:
IPR, Université de Rennes 1, CNRS UMR 6251, Campus Beaulieu, 35042 Rennes, France Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA
J. T. JENKINS
Affiliation:
IPR, Université de Rennes 1, CNRS UMR 6251, Campus Beaulieu, 35042 Rennes, France Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA
J. M. PASINI
Affiliation:
Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA
K. R. RASMUSSEN
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
*
Email address for correspondence: alexandre.valance@univ-rennes1.fr

Abstract

The work presented here focuses on the analysis of a turbulent boundary layer saturated with saltating particles. Experiments were carried out in a wind tunnel 15m long and 0.6m wide at the University of Aarhus in Denmark with sand grains 242 μm in size for wind speeds ranging from the threshold speed to twice its value. The saltating particles were analysed using particle image velocimetry (PIV) and particle-tracking velocimetry (PTV), and vertical profiles of particle concentration and velocity were extracted. The particle concentration was found to decrease exponentially with the height above the bed, and the characteristic decay height was independent of the wind speed. In contrast with the logarithmic profile of the wind speed, the grain velocity was found to vary linearly with the height. In addition, the measurements indicated that the grain velocity profile depended only slightly on the wind speed. These results are shown to be closely related to the features of the splash function that characterizes the impact of the saltating particles on a sandbed. A numerical simulation is developed that explicitly incorporates low-velocity moments of the splash function in a calculation of the boundary conditions that apply at the bed. The overall features of the experimental measurements are reproduced by simulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108, USA

References

REFERENCES

Anderson, R. S. & Haff, P. K. 1988 Simulation of aeolian saltation. Science 241, 820823.CrossRefGoogle Scholar
Anderson, R. S. & Haff, P. K. 1991 Wind modification and bed response during saltation of sand in air. Acta Mech. 1 (Suppl.), 2152.Google Scholar
Anderson, R. S., Sørensen, M. & Willetts, B. B. 1991 A review of recent progress in our understanding of aeolian transport. Acta Mech. 1 (Suppl.), 120.Google Scholar
Andreotti, B. 2004 A two-species model of aeolian sand transport. J. Fluid Mech. 510, 4770.CrossRefGoogle Scholar
Bagnold, R. A. 1941 The Physics of Blown Sand and Desert Dunes. Chapman and Hall/Methuen.Google Scholar
Beladjine, D., Ammi, M., Oger, L., Valance, A. & Bideau, D. 2007 An experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E 75, 6130561317.Google Scholar
Cercignani, C. 1988 The Boltzmann Equation and Its Applications. Springer.CrossRefGoogle Scholar
Duran, O. & Herrmann, H. 2006 Modeling of saturated sand flux. J. Stat. Mech., 7, P07011.Google Scholar
Hunt, J. R. C., Eames, I. & Westerweel, J. 2006 Mechanics of inhomogeneous turbulence and interfacial layers. J. Fluid Mech. 554, 499519.CrossRefGoogle Scholar
Iversen, J. D. & Rasmussen, K. R. 1999 The effect of wind speed and bed slope on sand transport. Sedimentology 46, 723731.CrossRefGoogle Scholar
Jenkins, J. T. & Hanes, D. M. 1998 Collisional sheet flows of sediment driven by a turbulent fluid. J. Fluid Mech. 370, 2952.CrossRefGoogle Scholar
Kind, R. J. 1976 A critical examination of the requirements for model simulation of wind-induced erosion/deposition phenomena such as snow drifting. Atmos. Environ. 10, 219227.CrossRefGoogle Scholar
Liu, X. & Dong, Z. 2004 Vertical profiles of aeolian sand mass flux. Geomorphology 59, 205219.Google Scholar
McKenna-Neuman, C. & Maljaars, M. 1997 Wind tunnel measurement of boundary layer response to sediment transport. Bound. Layer Meteorol. 84, 6783.CrossRefGoogle Scholar
Mitha, S., Tran, M. Q., Werner, B. T. & Haff, P. K. 1986 The grain/bed impact process in aeolian saltation. Acta Mech. 63, 267.CrossRefGoogle Scholar
Namikas, S. L. 2003 Field measurement and numerical modeling of aeolian mass flux distributions on a sandy beach. Sedimentology 50, 303326.CrossRefGoogle Scholar
Napalnis, P., Hunt, J. C. R. & Barrett, C. F. 1993 Saltating particles over flat beds. J. Fluid Mech. 251, 661685.Google Scholar
Nishimura, K. & Hunt, J. C. R. 2000 Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer. J. Fluid Mech. 417, 77102.CrossRefGoogle Scholar
Oger, L., Ammi, M., Valance, A. & Beladjine, B. 2005 Discrete element method studies of the collision of one rapid sphere on 2D and 3D packings. Eur. Phys. J. E 17, 467476.Google ScholarPubMed
Owen, P. R. 1964 Saltation of uniform grains in air. J. Fluid Mech. 20, 225242.CrossRefGoogle Scholar
Owen, P. R. 1980 The Physics of Sand Movement. Lecture notes. Workshop on Physics Desertification. International Centre for Theoretical Physics, Trieste.Google Scholar
Pasini, J. M. & Jenkins, J. T. 2005 Aeolian transport with collisional suspension. Phil. Trans. R. Soc. Lond. 363, 16251646.Google ScholarPubMed
Ptasinski, P. K., Boersma, B. J., Nieuwstadt, F. T. M., Hulsen, M. A., Van den Brule, B. H. A. A. & Hunt, J. C. R. 2003 Turbulent channel flow near maximum drag reduction: simulations experiments and mechanisms. J. Fluid Mech. 490, 251291.CrossRefGoogle Scholar
Rasmussen, K. R. & Mikkelsen, H. E. 1991 Wind tunnel observations of aeolian transport rates. Acta Mech. 1 (Suppl.), 135144.Google Scholar
Rasmussen, K. R. & Mikkelsen, H. E. 1998 On the efficiency of vertical array aeolian field traps. Sedimentology 45, 789800.CrossRefGoogle Scholar
Rasmussen, K. R. & Sørensen, M. 2005 Dynamics of Particles in Aeolian Saltation: Powder and Grains (Ed. Garcia-Rojo, R., Herrmann, H. J. & McNamara, S.) pp. 967971. A. A. Balkema Publishers.Google Scholar
Rice, M. A., Willetts, B. B. & McEwan, I. K. 1996 Observations of collisions of saltating grains with a granular bed from high-speed cine-film. Sedimentology 43, 2131.CrossRefGoogle Scholar
Richman, M. W. 1988 Boundary conditions based on a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75, 227240.CrossRefGoogle Scholar
Rioual, F., Valance, A. & Bideau, D. 2000 Experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E 62, 2450.Google ScholarPubMed
Sauermann, G., Kroy, K. & Herrmann, H. J. 2001 Continuum saltation model for sand dunes. Phys. Rev. E 64, 031305.Google ScholarPubMed
Sørensen, M. 1991 An analytic model of wind blown sand transport. Acta Mech. 1 (Suppl.), 6781.Google Scholar
Sørensen, M. 2004 On the rate of aeolian sand transport. Geomorphology 59, 5362.CrossRefGoogle Scholar
Sørensen, M. & McEwan, I. 1996 On the effect of mid-air collisions on aeolian saltation. Sedimentology 43, 6576.CrossRefGoogle Scholar
Ungar, J. & Haff, P. K. 1987 Steady state saltation in air. Sedimentology 34, 289.CrossRefGoogle Scholar
Werner, B. T. 1990 A steady-state model of wind-blown sand transport. J. Geol. 98, 117.CrossRefGoogle Scholar
Werner, B. T. & Haff, P. K. 1988 The impact process in aeolian saltation: two-dimensional simulations. Sedimentology 35, 189.CrossRefGoogle Scholar
White, B. R. & Mounla, H. 1991 An experimental study of froude number effect on wind-tunnel saltation. Acta Mech. 1 (Suppl.), 145157.Google Scholar
White, B. R. & Schulz, J. C. 1977 Magnus effect in saltation. J. Fluid Mech. 81, 497512.CrossRefGoogle Scholar
Willetts, B. B. & Rice, M. A. 1989 Collision of quartz grains with a sand bed: the influence of incident angle. Earth Surf. Proc. Land Forms 14, 719730.CrossRefGoogle Scholar
Yang, P., Dong, Z., Qian, G., Luo, W. & Wang, H. 2007 Height profile of the mean velocity of an aeolian saltating cloud: wind tunnel measurements by particle image velocimetry. Geomorphology 89, 320334.CrossRefGoogle Scholar