Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T12:53:22.469Z Has data issue: false hasContentIssue false

Further observations on intragenic recombination in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Arthur J. Hilliker
Affiliation:
Genetics and Cell Biology Section, Biological Sciences Group, The University of Connecticut, Storrs, Connecticut 06268
Arthur Chovnick
Affiliation:
Genetics and Cell Biology Section, Biological Sciences Group, The University of Connecticut, Storrs, Connecticut 06268
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This report examines several issues bearing upon intragenic recombination in higher eukaryotes. The fine structure data accumulated in our analysis of the genetic organization of the rosy locus in Drosophila melanogaster. Firstly, we confirm that a conversion event has a markedly less than 50% probability of resulting in flanking marker exchange, a finding consistent with more recent analyses of the available Saccharomyces data (e.g. Fogel et al. 1978). As reported earlier, co-conversion of recombinationally separable sites within the rosy locus occurs (McCarron, Gelbart & Chovnick, 1974). In this report, we demonstrate that the frequency of co-conversion is inversely proportional to the distance between co-converting sites. As in fungi, real conversion frequency differences are observed among rosy mutant alleles, and the data suggest that there may be a relationship between allele conversion frequency and map position. Unlike Neurospora and Saccharomyces, only one flanking marker exchange class is recovered from any given mutant heteroallele recombination experiment. In this respect, the Drosophila system resembles Aspergillus. As in Neurospora and Saccharomyces, rosy locus intragenic recombinants associated with flanking marker exchange exhibit interference with crossing over in adjacent regions, while no interference is seen among recombinants exhibiting parental flanking markers. Finally, experimental results are discussed which demonstrate the occurrence of postmeiotic segregation in Drosophila. These analogies between Drosophila and fungi provide further evidence in support of the notion that eukaryotes share common molecular mechanism(s) of meiotic recombination.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

Baker, B. S. & Carpenter, A. T. C. (1972). Genetic analysis of sex chromosomal meiotic mutants in Drosophila melanogaster. Genetics 71, 255286.CrossRefGoogle Scholar
Ballantyne, G. H. & Chovnick, A. (1971). Gene conversion in higher organisms: Non-reciprocal recombination events at the rosy cistron in Drosophila melanogaster. Genetical Research 17, 139149.CrossRefGoogle ScholarPubMed
Boyd, J. B., Golino, M. D. & Setlow, R. B. (1976). The mei-9 a mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics 84, 527544.CrossRefGoogle Scholar
Chovnick, A. (1961). The garnet locus in Drosophila melanogaster. I. Pseudoallelism. Genetics 46, 493507.CrossRefGoogle ScholarPubMed
Chovnick, A. (1973). Gene conversion and transfer of genetic information within the inverted region of inversion heterozygotes. Genetics 75, 123131.CrossRefGoogle ScholarPubMed
Chovnick, A., Ballantyne, G. H., Baillie, D. L. & Holm, D. G. (1970). Gene conversion in higher organisms: Half-tetrad analysis of recombination within the rosy region of Drosophila melanogaster. Genetics 66, 315329.CrossRefGoogle Scholar
Chovnick, A., Ballantyne, G. H. & Holm, D. G. (1971). Studies on gene conversion and its relationship to linked exchange in Drosophila melanogaster. Genetics 69, 179209.CrossRefGoogle ScholarPubMed
Chovnick, A., Gelbart, W. & McCarron, M. (1977). Organization of the rosy locus in Drosophila melanogaster. Cell 11, 110.CrossRefGoogle ScholarPubMed
Chovnick, A., Gelbart, W., McCarron, M., Osmond, B., Candido, E. P. M. & Baillie, D. L. (1976). Organization of the rosy locus in Drosophila melanogaster: Evidence for a control element adjacent to the xanthine dehydrogenase structural element. Genetics 84, 233255.CrossRefGoogle Scholar
Chovnick, A., Gelbart, W., Mcuarron, M. & Pandey, J. (1974). Studies on recombination in higher organisms. In Mechanisms in Recombination (ed. Grell, R. F.), pp. 351364. New York: Plenum.CrossRefGoogle Scholar
Chovnick, A., McCarron, M., Clark, S. H., Hilliker, A. J. & Rushlow, C. A. (1980). Structural and functional organization of a gene in Drosophila melanogaster. In Development and Neurobiology of Drosophila (eds. Siddiqi, O., Babu, P., Hall, L. M. & Hall, J. C.), pp. 323. New York: Plenum.CrossRefGoogle Scholar
Chovnick, A., Mcuarron, M., Hilliker, A., O'Donnel, J., Gelbart, W. & Clark, S. (1977). Gene organization in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology 42, 10111021.CrossRefGoogle Scholar
Dicaprio, L. & Hastings, P. J. (1976). Gene conversion and intragenic recombination at the SUP6 locus and the surrounding region in Saccharomyces cerevisiae. Genetics 84, 697721.CrossRefGoogle Scholar
Edwards, T. C. R., Candido, E. P. M. & Chovnick, A. (1977). Xanthine dehydrogenase from Drosophila melanogaster. A comparison of the kinetic parameters of the pure enzyme from two wild-type isoalleles differing at a putative regulatory site. Molecular and General Genetics 154, 16.CrossRefGoogle Scholar
Fogel, S., Hurst, D. D. & Mortimer, R. K. (1971). Gene conversion in unselected tetrads from multipoint crosses. Stadler Genetics Symposia 12, 89110.Google Scholar
Fogel, S., Mortimer, R., Lusnak, K. & Tavares, F. (1978). Meiotic gene conversion: A signal of the basic recombination event in yeast. Cold Spring Harbor Symposia on Quantitative Biology 43, 13251341.CrossRefGoogle Scholar
Gelbart, W. & Chovnick, A. (1979). Spontaneous unequal exchange in the rosy region of Drosophila melanogaster. Genetics 92, 849859.CrossRefGoogle ScholarPubMed
Gelbart, W., McCarron, M. & Chovnick, A. (1976). Extension of the limits of the XDH structural element in Drosophila melanogaster. Genetics 84, 211232.CrossRefGoogle ScholarPubMed
Gelbart, W., McCarron, M., Pandey, J. & Chovnick, A. (1974). Genetic limits of the xanthine dehydrogenase structural element within the rosy locus in Drosophila melanogaster. Genetics 78, 869886.CrossRefGoogle ScholarPubMed
Hadorn, E. & Schwink, I. (1956). A mutant of Drosophila without isoxanthopterine which is non-autonomous for the red eye pigments. Nature 177, 940941.CrossRefGoogle Scholar
Hastings, P. J. (1975). Some aspects of recombination in eukaryotic organisms. Annual Review of Genetics 9, 129144.CrossRefGoogle ScholarPubMed
Hilliker, A. J., Clark, S. H., Chovnick, A. & Gelbart, W. M. (1980). Cytogenic analysis of the chromosomal region immediately adjacent to the rosy locus in Drosophila melanogaster. Genetics 95, 95110.CrossRefGoogle Scholar
Kitani, Y. (1978). Absence of interference in association with gene conversion in Sordaria finicola, and presence of interference in association with ordinary recombination. Genetics 89, 467497.CrossRefGoogle ScholarPubMed
Lewis, E. B. (1967). Genes and gene complexes. In Heritage from Mendel (ed. Brink, R. A.), pp. 1747. Madison: University of Wisconsin Press.Google Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute Publication Number 627.Google Scholar
Lucchesi, J. C. & Suzuki, D. T. (1968). The interchromosomal control of recombination. Annual Review of Genetics 2, 5386.CrossRefGoogle Scholar
McCarron, M., Gelbart, W. & Chovnick, A. (1974). Intracistronic mapping of electrophoretic sites in Drosophila melanogaster: Fidelity of information transfer by gene conversion. Genetics 76, 289299.CrossRefGoogle ScholarPubMed
McCarhron, M., O'Donnell, J., Chovnick, A., Bhullar, B. S., Hewitt, J. & Candido, E. P. M. (1979). Organization of the rosy locus in Drosophila melanogaster: Further evidence in support of a cis-acting control element adjacent to the xanthine dehydrogenase structural element. Genetics 91, 275293.CrossRefGoogle Scholar
Mortimer, R. K. & Fogel, S. (1974). Genetical interference and gene conversion. In Mechanisms in Recombination (ed. Grell, R. F.), pp. 263275. New York: Plenum.CrossRefGoogle Scholar
Muller, H. J. (1916). The mechanism of crossing over. American Naturalist 50, 193221, 284305, 350366, 421–134.CrossRefGoogle Scholar
Nguyen, T. D. & Boyd, J. B. (1977). The meiotic-9 (mei-9) mutants of Drosophila melanogaster are deficient in repair replication of DNA. Molecular and General Genetics 158, 141147.CrossRefGoogle Scholar
Pees, E. (1967). Genetic fine structure and polarized negative interference at the lys-51 (FL) locus of Aspergillus nidulans. Genetica 38, 275304.CrossRefGoogle Scholar
Perkins, D. D. (1979). Crossing over of flanking markers is less than 50% among meiotic con vertan ts. Gentics 91, s94.Google Scholar
Romans, P. (1980 a). Gene conversion in mei-9 a, a crossover defective mutant in Drosophila melanogaster. Drosophila Information Service 55, 130132.Google Scholar
Romans, P. (1980 b). Effects of purine selection on survival of Drosophila mosaic for xanthine dehydrogenase (XDH) activity. Drosophila Information Service 55, 132134.Google Scholar
Smith, P. D., Finnerty, V. G. & Chovnick, A. (1970). Gene conversion in Drosophila: Non-reciprocal events at the maroon-like cistron. Nature 228, 441444.Google ScholarPubMed
Stadler, D. R. (1959). The relationship of gene conversion to crossing-over in Neurospora. Proceedings of the National Academy of Sciences U.S.A. 45, 16251629.CrossRefGoogle ScholarPubMed
Stadler, D. R. (1973). The mechanisms of intragenic recombination. Annual Review of Genetics 7, 113127.CrossRefGoogle ScholarPubMed
Stevens, W. L. (1936). The analysis of interference. Journal of Genetics 32, 5164.CrossRefGoogle Scholar