Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T14:58:31.651Z Has data issue: false hasContentIssue false

CLIMATE VARIABILITY AND CHANGE IN SOUTHERN MALI: LEARNING FROM FARMER PERCEPTIONS AND ON-FARM TRIALS

Published online by Cambridge University Press:  20 February 2015

BOUBA TRAORE*
Affiliation:
Institut D’Economie Rurale (IER), Programme Coton, Station de Recherche Agronomique de N’Tarla Bp: 28 Koutiala, Mali Plant Production Systems, Wageningen University, P.O. Box 430, 6700 AK Wageningen, the Netherlands
MARK T. VAN WIJK
Affiliation:
Livestock Systems and the Environment, International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
KATRIEN DESCHEEMAEKER
Affiliation:
Plant Production Systems, Wageningen University, P.O. Box 430, 6700 AK Wageningen, the Netherlands
MARC CORBEELS
Affiliation:
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)-Annual Cropping Systems C/O Embrapa Cerrados CP 08223 CEP 73310-970, Planaltina, DFBrasil
MARIANA C. RUFINO
Affiliation:
Livestock Systems and the Environment, International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
KEN E. GILLER
Affiliation:
Plant Production Systems, Wageningen University, P.O. Box 430, 6700 AK Wageningen, the Netherlands
*
§Corresponding author. Email: boubasiditraore@yahoo.fr

Summary

Agricultural production in the Sudano–Sahelian zone of west Africa is highly vulnerable to the impacts of climate variability and climate change. The present study aimed to understand farmers’ perceptions of climate variability and change and to evaluate adaptation options together with farmers, including tactical management of planting date in combination with the use of mineral fertilizer. Farmers perceived an increase in annual rainfall variability, an increase in the occurrence of dry spells during the rainy season, and an increase in temperature. Overall, this is in line with the observed meteorological data. Drought tolerant, short maturing crop varieties and appropriate planting dates were the commonly preferred adaptation strategies to deal with climate variability. On-farm trials confirmed that planting delays significantly reduce crop yields. The use of mineral fertilizer is often promoted, but risky for smallholders: although larger fertilizer applications increased the yield of maize (Zea mays) and millet (Pennisetum glaucum) significantly, a gross margin analysis indicated that it did not lead to more profit for all farmers. We conclude that integrating management of nutrients and planting time with improved farmer access to timely weather information, especially on the onset of the rains, is critical to enhancing adaptive capacity to increased climate variability and change.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adger, W. N., Huq, S., Brown, K., Conway, D. and Hulme, M. (2003). Adaptation to climate change in the developing world. Progress in Development Studies 3 (3):179195.CrossRefGoogle Scholar
Adjei-Nsiah, S. (2010). Farmers’ perceptions of climate change and variability and existing opportunities for adaptation in Wenchi Area of Ghana. The International Journal of Climate Change Impacts and Responses 2 (2):116.CrossRefGoogle Scholar
Aker, J. C. (2011). Dial ‘A’ for agriculture: a review of information and communication technologies for agricultural extension in developing countries. Agricultural Economics 42 (6):631647.CrossRefGoogle Scholar
Balme, M., Vischel, T., Lebel, T., Peugeot, C. and Galle, S. (2006). Assessing the water balance in the Sahel: impact of small scale rainfall variability on runoff: Part 1: rainfall variability analysis. Journal of Hydrology 331 (1–2):336348.CrossRefGoogle Scholar
Cleveland, D. and Soleri, D. (2007). Farmer knowledge and scientist knowledge in sustainable agricultural development: Ontology, epistemology and praxis. Local Science vs Global Science: Approaches to Indigenous Knowledge in International Development., 209230 New York: Berghahn.Google Scholar
Cooper, P. J. M., Dimes, J., Rao, K. P. C., Shapiro, B., Shiferaw, B. and Twomlow, S. (2008). Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: an essential first step in adapting to future climate change? Agriculture, Ecosystems and Environment 126:2435.CrossRefGoogle Scholar
Deressa, T. T., Hassan, R. M., Ringler, C., Alemu, T. and Yesuf, M. (2009). Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Global Environmental Change 19 (2):248255.CrossRefGoogle Scholar
Diggs, D. M. (1991). Drought experience and perception of climatic change among Great Plains farmers. Great Plains Research: A Journal of Natural and Social Sciences 1:114132.Google Scholar
Galvin, K. A., Boone, R. B., Smith, N. M. and Lynn, S. J. (2001). Impacts of climate variability on East African pastoralists: linking social science and remote sensing. Climate Research 19 (2):161172.CrossRefGoogle Scholar
Hazelton, P. and Murphy, B. (2007). Interpreting Soil Test Results: What do All the Number Means? Collingwood, Victoria, Australia: CSIRO publishing.CrossRefGoogle Scholar
Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M. and Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America 104 (50):1969119696.CrossRefGoogle ScholarPubMed
IER/CMDT/OHVN (1998). Mémoire de réunion de concertation sur la baisse de rendement de la variété NTA 88–6 au cours de la campagne 97/98. 34 P N’Tarla, Mali: Institut d’Economie Rurale.Google Scholar
Ingram, K. T., Roncoli, M. C. and Kirshen, P. H. (2002). Opportunities and constraints for farmers of west Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agricultural Systems 74 (3):331349.CrossRefGoogle Scholar
Kamara, A., Y, Friday, E., David, C. and Lucky, O. O. (2009). Planting date and cultivar effects on grain yield in dryland corn production. Agronomy Journal 101:9198.CrossRefGoogle Scholar
Lobell, D. B. and Burke, M. B. (2008). Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environment Research Letters 3:8.CrossRefGoogle Scholar
Lybbert, T. J. and Sumner, D. A. (2012). Agricultural technologies for climate change in developing countries: policy options for innovation and technology diffusion. Food Policy 37 (1):114123.CrossRefGoogle Scholar
Matlon, P. and Kristjanson, P. (1988). Farmer's strategies to manage crop risk in the West African semi-arid tropics. In Challenges in Dryland Agriculture: A Global Perspective. Proceedings of the International Conference on Dryland Farming, Bushland, Texas, USA, 15–19 August, 604606 (Eds Unger, P. W., Jordan, W. R., Sneed, T. V., Jensen, R. W.). Patancheru, India: ICRISAT.Google Scholar
Mertz, O., Mbow, C., Reenberg, A. and Diouf, A. (2009). Farmers’ perceptions of climate change and agricultural adaptation strategies in rural sahel. Environmental Management 43 (5):804816.CrossRefGoogle ScholarPubMed
Milgroom, J. and Giller, K. (2013). Courting the rain: rethinking seasonality and adaptation to recurrent drought in semi-arid southern Africa. Agricultural Systems 118:91104.CrossRefGoogle Scholar
Mortimore, M. J. and Adams, W. M. (2001). Farmer adaptation, change and ‘crisis’ in the Sahel. Global Environmental Change 11 (1):4957.CrossRefGoogle Scholar
Nicholls, N. (1999). Cognitive illusions, heuristics, and climate prediction. Bulletin of the American Meteorological Society 80 (7):13851397.2.0.CO;2>CrossRefGoogle Scholar
OMA (2012). Le reflet: Bulletin mensuel du marche agricole. Observatoire du Marche Agricole, Mai 2012.Google Scholar
Roudier, P., Sultan, B., Quirion, P. and Berg, A. (2011). The impact of future climate change on west African crop yields: what does the recent literature say? Global Environmental Change 21 (3):10731083.CrossRefGoogle Scholar
Rurinda, J. (2014). Vulnerability and Adaptation to Climate Variability and Change in Smallholder Farming Systems in Zimbabwe. PhD thesis, Wageningen University, Wageningen.Google Scholar
Rurinda, J., Mapfumo, P., van Wijk, M. T., Mtambanengwe, F., Rufino, M. C., Chikowo, R. and Giller, K. E. (2013). Managing soil fertility to adapt to rainfall variability in smallholder cropping systems in Zimbabwe. Field Crops Research 154:211225.CrossRefGoogle Scholar
Sanogo, O. M. (2010). Participatory evaluation of the dairy cow supplementation technologies in a country setting at Mali (Koutiala)/Évaluation participative des technologies de supplementation des vaches laitières en milieu paysan au Mali (Koutiala). Canadian Journal of Development Studies 31 (1–2):91106.CrossRefGoogle Scholar
Sillitoe, P. (1998). The development of indigenous knowledge: a new applied anthropology 1. Current Anthropology 39 (2):223252.CrossRefGoogle Scholar
Simelton, E., Quinn, C. H., Batisani, N., Dougill, A. J., Dyer, J. C., Fraser, E. D., Mkwambisi, D., Sallu, S. and Stringer, L. C. (2013). Is rainfall really changing? Farmers’ perceptions, meteorological data, and policy implications. Climate and Development 5 (2):123138.CrossRefGoogle Scholar
Sultan, B., Baron, C., Dingkuhn, M., Sarr, B. and Janicot, S. (2005). Agricultural impacts of large-scale variability of the West African monsoon. Agricultural and Forest Meteorology 128 (1–2):93110.CrossRefGoogle Scholar
Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., Dingkuhn, M., Ciais, P., Guimberteau, M., Traore, S. and Baron, C. (2013). Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environmental Research Letters 8 (1):014040.CrossRefGoogle Scholar
Thomas, D. G., Twyman, C., Osbahr, H. and Hewitson, B. (2007). Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Climatic Change 83 (3):301322.CrossRefGoogle Scholar
Traore, B., Corbeels, M., van Wijk, M. T., Rufino, M. C. and Giller, K. E. (2013). Effects of climate variability and climate change on crop production in southern Mali. European Journal of Agronomy 49:115125.CrossRefGoogle Scholar
Traore, B., van Wijk, M. T., Descheemaeker, K., Corbeels, M., Rufino, M. C. and Giller, K. E. (2014). Evaluation of climate adaptation options for Sudano-Sahelian cropping systems. Field Crops Research 156:6375.CrossRefGoogle Scholar
Vanlauwe, B., Wendt, J., Giller, K. E., Corbeels, M., Gerard, B. and Nolte, C. (2014). A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: the appropriate use of fertilizer to enhance crop productivity. Field Crops Research 155:1013.CrossRefGoogle Scholar
Vedwan, N. (2006). Culture, climate and the environment: local knowledge and perception of climate change among apple growers in Northwestern India. Journal of Ecological Anthropology 10 (1):418.CrossRefGoogle Scholar
Veldkamp, W. J., Traore, A., N’Diaye, M. K., Keïta, M. K., Keïta, B. and Bagayoko, M. (1991). Fertilité des sols du Mali. Mali-Sud/Office du Niger. Interpretation analytiques des données des sols et des Plantes, 149. Bamako, Mali: Institut d’Economie Rurale, Laboratoire Sol-Eau-Plante.Google Scholar
Waha, K., Müller, C., Bondeau, A., Dietrich, J. P., Kurukulasuriya, P., Heinke, J. and Lotze-Campen, H. (2013). Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change 23 (1):130143.CrossRefGoogle Scholar
Supplementary material: PDF

Traore supplementary material

Appendix

Download Traore supplementary material(PDF)
PDF 2.6 MB