Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T09:27:13.131Z Has data issue: false hasContentIssue false

Effect of meadow regeneration on bee (Hymenoptera: Apoidea) abundance and diversity in southern Ontario, Canada

Published online by Cambridge University Press:  22 August 2013

Amy C. Rutgers-Kelly
Affiliation:
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
Miriam H. Richards*
Affiliation:
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
*
2Corresponding author (e-mail: mrichards@brocku.ca).

Abstract

To investigate how bee (Hymenoptera: Apoidea) communities repopulate habitat following severe disturbances, we compared assemblages in new, regenerating landfill sites planted in 2003, recent landfill sites planted in 2000, and control meadows relatively undisturbed for >40 years. All sites were identically sampled using pan traps and sweep netting, from early May to late September 2003, equalising collection effort among sites. In addition, we carried out five-minute aerial net samplings wherever sites contained large patches of wildflowers. We predicted that abundance and diversity of bees would be highest in recent sites and lowest in new sites. This prediction was partially supported: bees were most abundant in recent sites followed by control, then new sites, but species richness was highest (82 species) in recent sites, followed by new sites (67 species), then control (66 species). A randomisation analysis showed that there were more species than expected in new sites and fewer than expected in control sites. Differences in blossom availability likely explain differences in bee abundance and diversity among habitat regeneration levels. Overall, our results suggest that the bee community recolonised newly available sites immediately in the first year and that bee diversity and abundance increased for at least three years, subsequently declining between three and 40 years.

Résumé

Afin d’étudier la manière dont les communautés d'abeilles (Hymenoptera: Apoidea) repeuplent les habitats après des perturbations importantes, nous comparons les peuplements dans des nouveaux terrains de remblayage en régénération végétalisés en 2003, des sites de remblayage récents végétalisés en 2000 et des prés témoins relativement peu perturbés pour > 40 ans. Tous ces sites ont été échantillonnés de manière identique à l'aide de pièges à cuvette et de filets fauchoirs du début de mai jusqu’à la fin de septembre en 2003, avec une égalisation des efforts de récolte entre les sites. Nous avons, de plus, fait des échantillonnages de cinq minutes au filet aérien lorsque les sites contenaient d'importantes taches de fleurs sauvages. Nous avons prédit que l'abondance et la diversité des abeilles seraient maximales dans les sites récents et minimales dans les sites nouveaux. Cette prédiction est en partie confirmée par nos résultats: les abeilles sont les plus abondantes dans les sites récents, puis dans les sites témoins et dans les sites nouveaux, mais la richesse spécifique est plus élevée dans les sites récents (82 espèces), puis dans les sites nouveaux (67 espèces) et enfin dans les sites témoins (66 espèces). Une analyse de randomisation montre qu'il y a plus d'espèces qu'attendu dans les nouveaux sites et moins qu'attendu dans les sites témoins. Des différences dans la disponibilité des fleurs expliquent vraisemblablement les différences d'abondance et de diversité des abeilles en fonction des degrés de régénération des habitats. Globalement, nos résultats indiquent que la communauté d'abeilles recolonise les sites nouvellement disponibles immédiatement au cours de la première année et que l'abondance et la diversité des abeilles augmentent pendant au moins trois ans, pour ensuite décliner entre la quatrième et la 41e année.

Type
Biodiversity & Evolution
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: David McCorquodale

References

Bommarco, R., Biesmeijer, J., Meyer, B., Potts, S.G., Poyry, J., Roberts, S.P.M., et al. 2010. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceeding of the Royal Society London Series B, 277: 20752082.Google ScholarPubMed
Butt, S., Ramprasad, P., Fenech, A. 2005. Changes in the landscape of southern Ontario, Canada since 1750: impacts of European colonization. In Integrated mapping assessment. Edited by A. Fenech, D. MacIver, H. Aulg, and R. Hansell. Environment Canada, Toronto, Ontario, Canada. Pp. 8392.Google Scholar
Cane, J.H., Tepedino, V.J. 2001. Causes and extent of declines among native North American invertebrate pollinators: detection, evidence, and consequences. Conservation Ecology, 5: 1. Available from http://www.consecol.org/vol5/iss1/art1/ [accessed 31 March 2013].CrossRefGoogle Scholar
Carvell, C. 2002. Habitat use and conservation of bumblebees (Bombus spp.) under different grassland management regimes. Biological Conservation, 103: 3349.CrossRefGoogle Scholar
Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11: 265270.Google Scholar
Colwell, R. 2009. EstimateS: statistical estimation of species richness and shared species from samples. University of Connecticut, Storrs, Connecticut, United States of America. Available from http://viceroy.eeb.uconn.edu/estimates/ [accessed 31 March 2013].Google Scholar
Connell, J.H. 1978. Diversity in tropical rainforests and coral reefs. Science, 199: 13021310.CrossRefGoogle Scholar
Exeler, N., Kratochwil, A., Hochkirch, A. 2009. Restoration of riverine inland sand dune complexes: implications for the conservation of wild bees. Journal of Applied Ecology, 46: 10971105.CrossRefGoogle Scholar
Forup, M.L., Henson, K.S.E., Craze, P.G., Memmott, J. 2008. The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. Journal of Applied Ecology, 45: 742752.CrossRefGoogle Scholar
Gathmann, A., Greiler, H.J., Tscharntke, T. 1994. Trap-nesting bees and wasps colonizing set-aside fields: succession and body size, management by cutting and sowing. Oecologia, 98: 814.CrossRefGoogle ScholarPubMed
Grixti, J.C., Packer, L. 2006. Changes in the bee fauna (Hymenoptera: Apoidea) of an old field site in southern Ontario, revisited after 34 years. The Canadian Entomologist, 138: 147164.CrossRefGoogle Scholar
Hopwood, J.L. 2008. The contribution of roadside grassland restorations to native bee conservation. Biological Conservation, 141: 26322640.CrossRefGoogle Scholar
Hsiang Liow, L.H., Sodhi, N.S., Elmqvist, T. 2001. Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. Journal of Applied Ecology, 38: 180192.CrossRefGoogle Scholar
McIntyre, N.E., Hostetler, M.E. 2001. Effects of urban land use on pollinator (Hymenoptera: Apoidea) communities in a desert metropolis. Basic and Applied Ecology, 2: 209218.Google Scholar
Moretti, M., Obrist, M.K., Duelli, P. 2004. Arthropod biodiversity after forest fires: winners and losers in the winter fire regime of the southern Alps. Ecography, 27: 173186.CrossRefGoogle Scholar
Muller, M.R., Middleton, J. 1994. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9: 151157.CrossRefGoogle Scholar
Packer, L., Sampson, B., Lockerbie, C., Jessome, V. 1989. Nest architecture and brood mortality in four species of sweat bee (Hymenoptera; Halictidae) from Cape Breton Island. Canadian Journal of Zoology, 67: 28642870.CrossRefGoogle Scholar
Potts, S.G., Vulliamy, B., Dafni, A., Ne'eman, G., O'Toole, C., Roberts, S., et al. 2003a. Response of plant-pollinator communities to fire: changes in diversity, abundance and floral reward structure. Oikos, 101: 103112.CrossRefGoogle Scholar
Potts, S.G., Vulliamy, B., Dafni, A., Ne'eman, G., Willmer, P. 2003b. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology, 84: 26282642.CrossRefGoogle Scholar
Potts, S.G., Vulliamy, B., Roberts, S., O'Toole, C., Dafni, A., Ne'Eman, G., et al. 2005. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecological Entomology, 30: 7885.CrossRefGoogle Scholar
Potts, S.G., Willmer, P. 1997. Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecological Entomology, 22: 319328.CrossRefGoogle Scholar
Proctor, E., Nol, E., Burke, D., Crins, W.J. 2012. Responses of insect pollinators and understory plants to silviculture in northern hardwood forests. Biodiversity and Conservation, 21: 17031740.CrossRefGoogle Scholar
Richards, M.H., Rutgers-Kelly, A., Gibbs, J., Vickruck, J.L., Rehan, S.M., Sheffield, C.S. 2011. Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario, Canada. The Canadian Entomologist, 143: 279299.CrossRefGoogle Scholar
Richardson, J.M.L., Richards, M.H. 2008. A randomisation program to compare species-richness values. Insect Conservation and Diversity, 1: 135141.CrossRefGoogle Scholar
Soucy, S.L. 2002. Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Annals of the Entomological Society of America, 95: 5765.CrossRefGoogle Scholar
Steffan-Dewenter, I., Tscharntke, T. 2001. Succession of bee communities on fallows. Ecography, 24: 8393.CrossRefGoogle Scholar
Tscharntke, T., Gathman, A., Steffan-Dewenter, I. 1998. Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. Journal of Applied Ecology, 35: 708719.CrossRefGoogle Scholar
Vickruck, J.L., Rehan, S.M., Sheffield, C.S., Richards, M.H. 2011. The nesting biology of two cryptic species of Ceratina dupla, with comparisons to C. calcarata (Hymenoptera: Apidae). The Canadian Entomologist, 143: 254262.CrossRefGoogle Scholar
Williams, N.M. 2011. Restoration of nontarget species: bee communities and pollination function in riparian forests. Restoration Ecology, 19: 450459.CrossRefGoogle Scholar
Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L., Potts, S.G. 2010. Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143: 22802291.CrossRefGoogle Scholar
Winfree, R. 2010. The conservation and restoration of wild bees. In The year in ecology and conservation biology 2010 (Special Issue). Edited by R.S. Ostfeld and W.H. Schlesinger. Annals of the New York Academy of Sciences, 1195: 169–197.Google Scholar
Winfree, R., Aguilar, R., Vazquez, D.P., LeBuhn, G., Aizen, M.A. 2009. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology, 90: 20682076.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Rutgers-Kelly Supplementary Material

Image

Download Rutgers-Kelly Supplementary Material(Image)
Image 1.2 MB
Supplementary material: Image

Rutgers-Kelly Supplementary Material

Image

Download Rutgers-Kelly Supplementary Material(Image)
Image 786.5 KB
Supplementary material: Image

Rutgers-Kelly Supplementary Material

Image

Download Rutgers-Kelly Supplementary Material(Image)
Image 160.4 KB