Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T17:26:43.068Z Has data issue: false hasContentIssue false

PREDATORY BEHAVIOR AND PREY-STAGE PREFERENCES OF STIGMAEID AND PHYTOSEIID MITES AND THEIR POTENTIAL COMPATIBILITY IN BIOLOGICAL CONTROL

Published online by Cambridge University Press:  31 May 2012

David R. Clements
Affiliation:
Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6
Rudolf Harmsen
Affiliation:
Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6

Abstract

Although the role of phytoseiid mites as predators of the European red mite, Panonychus ulmi (Koch), on apple is well established, the role of another family of European red mite predators, the stigmaeids, is not as clearly understood. We compared predatory behavior and prey-stage preferences of the stigmaeid Zetzellia mali (Ewing) and the phytoseiid Typhlodromus caudiglans (Schuster) in the laboratory. The only predator–predator interaction we found to be potentially important was consumption of phytoseiid eggs by stigmaeids. Given a choice of equal numbers of both European red mite eggs and phytoseiid eggs, Z. mali consumed 38% phytoseiid eggs. Eggs and quiescent larval stages of European red mite were preferred by Z. mali, but active larval stages also were consumed. By contrast T. caudiglans preferred active forms to quiescent forms and eggs, and was able to consume adult forms. Although Z. mali was found to be slower, less active, and less voracious than T. caudiglans, Z. mali produced more eggs for a given number of prey consumed than did T. caudiglans. These behavioral and prey-stage preference differences should enable phytoseiids and stigmaeids to be compatible in the short term (within one generation).

Résumé

Bien que le rôle des acariens phytoseiides prédateurs du trétranique rouge du pommier, Panonychus ulmi (Koch), est bien connu chez le pommier, le rôle d’une autre famille de prédateurs, les stigmaeides, n’est pas aussi bien compris. En conditions de laboratoire on a comparé le comportement de prédation de même que la préférences pour un stade de développement de leurs proies chez le stigmaeid Zetzellia mali (Ewing) et le phytoseiid Typhlodromus caudiglans (Schuster). La consommation des oeufs de phytoseiides par les stigmaeides est la seule interaction importante existante entre les prédateurs. Mis en présence d’un nombre égal d’oeufs du tétranique rouge du pommier et d’oeufs de phytoseiide, Z. mali a consommé 38% des oeufs de phytoseiides. Zetzellia mali a préféré les oeufs et les larves quiescentes du tétranique rouge du pommier mais les stades larvaires actifs ont aussi été consommés. A l’opposé, T. caudiglans a préféré les stades actifs aux oeufs et aux stades quiescents mais pouvait aussi consommer les adultes. Quoique plus lent, moins actif et moins vorace que T. caudiglans, Z. mali a produit plus d’oeufs pour un nombre donné de proies consommées comparativement à T. caudiglans. Ces différences de comportement et de préférences pour un stade donné de leur proie devraient permettre aux phytoseiides et aux stigmaeides d’être compatibles sur une courte période (à l’intérieur d’une génération).

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Childers, C.C., and Enns, W.R.. 1975. Field evaluation of early season fungicide substitutions on tetranychid mites and the predators Neoseiulus fallacis and Agistemus fleschneri in two Missouri apple orchards. J. econ. Ent. 68: 719724.CrossRefGoogle Scholar
Croft, B.A., and Blyth, E.J.. 1979. Aspects of the functional, ovipositional and starvation response of Amblyseius fallacis to prey density. Rec. Adv. Acar. 1: 4147.CrossRefGoogle Scholar
Croft, B.A., and McGraoty, D.L.. 1977. The role of Amblyseius fallacis (Acarina: Phytoseiidae) in Michigan apple orchards. Mich. State Univ. Agric. Exp. Stn. Res. Rep. 333. 22 pp.Google Scholar
Dover, M.J., Croft, B.A., Welch, S.M., and Tummala, R.L.. 1979. Biological control of Panonychus ulmi (Acarina: Tetranychidae) by Amblyseius fallacis (Acarina: Phytoseiidae) on apple: a prey–predator model. Environ. Ent. 8: 282292.CrossRefGoogle Scholar
Eveleigh, E.S., and Chant, D.A.. 1981. Experimental studies on acarine predator–prey interactions: effects of predator age and feeding history on prey consumption and the functional response to prey density (Acarina: Phytoseiidae). Can. J. Zool. 59: 13871406.CrossRefGoogle Scholar
Gerson, U. 1985. Other predaceous mites and spiders. pp. 205210in Helle, W., and Sabelis, M.W. (Eds.), Spider Mites: Their Biology, Natural Enemies and Control. Vol. 1B. Elsevier, Amsterdam, The Netherlands.Google Scholar
Herbert, H.J. 1981. Biology, life tables, and intrinsic rate of increase of the European red mite, Panonychus ulmi (Acarina:Tetranychidae). Can. Ent. 113: 6571.CrossRefGoogle Scholar
Johnson, D.T., and Croft, B.A.. 1976. Laboratory study of the dispersal behavior of Amblyseius fallacis (Acarina: Phytoseiidae). Ann. ent. Soc. Am. 69: 10191023.CrossRefGoogle Scholar
Johnson, D.T., and Croft, B.A.. 1981. Dispersal of Amblyseius fallacis (Acarina: Phytoseiidae) in an apple ecosystem. Environ. Ent. 10: 313319.CrossRefGoogle Scholar
Johnson, D.L., and Wellington, W.G.. 1984. Simulation of the interactions of predatory Typhlodromus mites with the European red mite, Panonychus ulmi (Koch). Res. Popul. Ecol. 26: 3050.CrossRefGoogle Scholar
Sabelis, M.W. 1981. Biological control of two-spotted spider mites using phytoseiid predators. Part 1: Modelling the predator–prey interaction at the individual level. Agric Res. Rep., Wageningen, The Netherlands. 242 pp.Google Scholar
Santos, M.A. 1976. Evaluation of Zetzellia mali as a predator of Panonychus ulmi and Aculus schlechtendali. Environ. Ent. 5: 187191.CrossRefGoogle Scholar
Santos, M.A. 1982. Effects of low prey densities on the predation and oviposition of Zetzellia mali (Acarina: Stigmaeidae). Environ. Ent. 13: 6569.CrossRefGoogle Scholar
Santos, M.A., and Laing, J.E.. 1985. Stigmaeid predators. pp. 197203in Helle, W., and Sabelis, M.W. (Eds.), Spider Mites: Their Biology, Natural Enemies and Control. Vol. 1B. Elsevier, Amsterdam, The Netherlands.Google Scholar
Strickler, K.N., Cushing, M., Whalon, M.E., and Croft, B.A.. 1987. Mite (Acari) species composition in Michigan apple orchards. Environ. Ent. 17: 3036.CrossRefGoogle Scholar
Van de Vrie, M. 1985. Apple. pp. 311326in Helle, W., and Sabelis, M.W. (Eds.), Spider Mites: Their Biology, Natural Enemies and Control. Vol. 1B. Elsevier, Amsterdam, The Netherlands.Google Scholar
White, N.D.G., and Laing, J.E.. 1977. Field observations of Zetzellia mali (Ewing) (Acarina: Stigmaeidae) in southern Ontario apple orchards. Proc. ent. Soc. Ont. 108: 2330.Google Scholar
Woolhouse, M.E.J., and Harmsen, R.. 1984. The mite complex on the foliage of a pesticide-free apple orchard: population dynamics and habitat associations. Proc. ent. Soc. Ont. 115: 111.Google Scholar
Woolhouse, M.E.J., and Harmsen, R.. 1987 a. A transition matrix model of seasonal changes in mite populations. Ecological Modelling 37: 167189.CrossRefGoogle Scholar
Woolhouse, M.E.J., and Harmsen, R.. 1987 b. A transition matrix model of the population dynamics of a two-prey-two-predator acarid complex. Ecological Modelling 39: 307323.CrossRefGoogle Scholar