Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-27T23:32:53.426Z Has data issue: false hasContentIssue false

Two mitochondrial lineages occur in the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae), in Japan

Published online by Cambridge University Press:  16 June 2008

S. Hoshizaki*
Affiliation:
Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo 113–8657, Japan
R. Washimori
Affiliation:
Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo 113–8657, Japan
S. Kubota
Affiliation:
Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo 113–8657, Japan
S. Ohno
Affiliation:
Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo 113–8657, Japan Graduate School of Agriculture, Hokkaido University, Sapporo 060–8589, Japan
Y. Huang
Affiliation:
Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
S. Tatsuki
Affiliation:
Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo 113–8657, Japan
Y. Ishikawa
Affiliation:
Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo 113–8657, Japan
*
*Author for correspondence Fax: +81 3 5841 5061 E-mail: ahossy@mail.ecc.u-tokyo.ac.jp

Abstract

The genealogy and diversity of the mitochondrial cytochrome oxidase subunit II (COII) gene were investigated for Ostrinia furnacalis in Japan. A preliminary examination of mitochondrial lineages in China and the Philippines was also made. Two lineages (A and B) were found in the COII gene. Lineage A was frequent throughout the Japanese main islands (Hokkaido, Honshu, Shikoku and Kyushu), while the frequency of lineage B varied among these islands. No clear patterns of geographical population structure were found. Population genetic features suggested that the O. furnacalis population harboring the lineage A mitochondria expanded in the recent past, while lineage B showed weak signals of a population expansion. It is not clear whether the two lineages of mtDNA evolved in separate or identical geographical regions. We discuss two hypotheses regarding the two lineages of mtDNA: a cryptic race/species hypothesis and a selective sweep hypothesis.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aris-Brosou, S. & Excoffier, L. (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Molecular Biology and Evolution 13, 494504.CrossRefGoogle ScholarPubMed
Avise, J.C. (1994) Molecular Markers, Natural History and Evolution. 511 pp. New York, Chapman & Hall.CrossRefGoogle Scholar
Avise, J.C. (2000) Phylogeography: The History and Formation of Species. 447 pp. Boston, Massachusetts, Harvard University Press.CrossRefGoogle Scholar
Ballard, J.W.O. (2000) Comparative genomics of mitochondrial DNA in Drosophila simulans. Journal of Molecular Evolution 51, 6475.CrossRefGoogle ScholarPubMed
Bethenod, M.-T., Thomas, Y., Rousset, F., Frerot, B., Pélozuelo, L., Genestier, G. & Bourguet, D. (2005) Genetic isolation between two sympatric host plant races of the European corn borer, Ostrinia nubilalis Hübner. II: assortative mating and host-plant preference for oviposition. Heredity 94, 264270.CrossRefGoogle ScholarPubMed
Bourguet, D., Bethenod, M.T., Trouvé, C. & Viard, F. (2000) Host-plant diversity of the European corn borer Ostrinia nubilalis: what value for sustainable transgenic insecticidal Bt maize? Proceedings of the Royal Society of London Series B 267, 11171184.Google ScholarPubMed
Castelloe, J. & Templeton, A.R. (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Molecular Phylogenetics and Evolution 3, 102113.CrossRefGoogle ScholarPubMed
Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 16571659.CrossRefGoogle ScholarPubMed
Crandall, K.A. & Templeton, A.R. (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134, 959969.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Frolov, A.N. (1998) Variation in the European corn borer, Ostrinia nubilalis, and allies (Lepidoptera: Pyralidae). Mémoirs de la Société Royale Belge d'Entmologie 38, 121.Google Scholar
Fu, Y.X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915925.CrossRefGoogle ScholarPubMed
Geurgas, S.R., Infante-Malachias, M.E. & Azeredo-Espin, A.M.L. (2000) Extreme mitochondrial DNA variability and lack of genetic structure in populations of Dermatobia hominis (Diptera: Cuterebridae) from Brazil. Annals of the Entomological Society of America 93, 10851094.CrossRefGoogle Scholar
Hattori, I. & Mutuura, A. (1987) Identification of Japanese species belonging to the genus Ostrinia with the host relationships. Shokubutsu-bôeki 41, 2431 (in Japanese).Google Scholar
Hinomoto, N., Osakabe, Mh., Gotoh, T. & Takafuji, A. (2001) Phylogenetic analysis of green and red forms of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), in Japan, based on mitochondrial cytochrome oxidase subunit I sequences. Applied Entomology and Zoology 36, 459464.CrossRefGoogle Scholar
Honda, H. & Mitsuhashi, W. (1989) Morphological and morphometrical differences between the fruit- and Pinaceae-feeding type of yellow peach moth, Conogethes punctiferalis (Guenée) (Lepidoptera: Pyralidae). Applied Entomology and Zoology 24, 110.CrossRefGoogle Scholar
Honda, H., Himeno, K. & Yoshiyasu, Y. (1994) Chemotaxonomy of the cotton leaf-roller (Lepidoptera: Pyralidae) in Japan with special reference to differences in sex pheromones. Applied Entomology and Zoology 29, 323330.CrossRefGoogle Scholar
Huang, Y., Takanashi, T., Hoshizaki, S., Tatsuki, S., Honda, H., Yoshiyasu, Y. & Ishikawa, Y. (1998) Geographic variation in sex pheromone of Asian corn borer, Ostrinia furnacalis, in Japan. Journal of Chemical Ecology 24, 20792088.CrossRefGoogle Scholar
Hunter, M.S., Perlman, S.J. & Kelly, S.E. (2003) A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proceedings of the Royal Society of London Series B 270, 21852190.CrossRefGoogle ScholarPubMed
Hurst, G.D.D. & Jiggins, F.M. (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerging Infectious Diseases 6, 329336.CrossRefGoogle ScholarPubMed
Ishikawa, Y., Takanashi, T., Kim, C.-G., Hoshizaki, S., Tatsuki, S. & Huang, Y. (1999) Ostrinia spp. in Japan: their host plants and sex pheromones. Entomologia Experimentalis et Applicata 91, 237244.CrossRefGoogle Scholar
Johnstone, R.A. & Hurst, G.D.D. (1996) Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biological Journal of the Linnean Society 58, 453470.CrossRefGoogle Scholar
Kageyama, D. & Trout, W. (2004) Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proceedings of the Royal Society of London Series B: Biological Sciences 271, 251258.CrossRefGoogle ScholarPubMed
Kageyama, D., Nishimura, G., Hoshizaki, S. & Ishikawa, Y. (2002) Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity 88, 444449.CrossRefGoogle Scholar
Kim, C.-G., Hoshizaki, S., Huang, Y., Tatsuki, S. & Ishikawa, Y. (1999) Usefulness of mitochondrial COII gene sequence in examining phylogenetic relationships in the Asian corn borer, Ostrinia furnacalis, and allied species (Lepidoptera: Pyralidae). Applied Entomology and Zoology 34, 405412.CrossRefGoogle Scholar
Leniaud, L., Audiot, P., Bourguet, D., Frerot, B., Genestier, G., Lee, S.F., Malausa, T., Le Pallec, A.-H., Souqual, M.-C. & Ponsard, S. (2006) Genetic structure of European and Mediterranean maize borer populations on several wild and cultivated host plants. Entomologia Experimentalis et Applicata 120, 5162.CrossRefGoogle Scholar
Liu, H. & Beckenbach, A.T. (1992) Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Molecular Phylogenetics and Evolution 1, 4152.CrossRefGoogle ScholarPubMed
Magoulas, A., Tsimenides, N. & Zouros, E. (1996) Mitochondrial DNA phylogeny and the reconstruction of the population history of a species: the case of the European anchovy (Engraulis encrasicolus). Molecular Biology and Evolution 13, 178190.CrossRefGoogle ScholarPubMed
Malausa, T., Bethenod, M.-T., Bontemps, A., Bourguet, D., Cornuet, J.-M. & Ponsard, S. (2005) Assortative mating in sympatric host races of the European corn borer. Science 308, 258260.CrossRefGoogle ScholarPubMed
Martel, C., Réjasse, A., Rousset, F., Bethenod, M.-T. & Bourguet, D. (2003) Host-plant-associated genetic differentiation in northern French populations of the European corn borer. Heredity 90, 141149.CrossRefGoogle ScholarPubMed
Matsukura, K., Hoshizaki, S., Ishikawa, Y. & Tatsuki, S. (2006) Morphometric differences between rice and water-oats population of the striped stem borer moth, Chilo suppressalis (Lepidoptera: Crambidae). Applied Entomology and Zoology 41, 529535.CrossRefGoogle Scholar
Milligan, B.G. (1992) Plant DNA isolation. pp. 5988in Hoelzel, A.R. (Ed.) Molecular Genetic Analysis of Populations: A Practical Approach. New York, Oxford University Press.Google Scholar
Mutuura, A. & Munroe, E. (1970) Taxonomy and distribution of the European corn borer and allied species: genus Ostrinia (Lepidoptera: Pyralidae). Memoirs of the Entomological Society of Canada 71, 1112.CrossRefGoogle Scholar
Nei, M. (1987) Molecular Evolutionary Genetics. 433 pp. Tokyo, Baifukan (translation to Japanese by Gojobori, T. & Saitou, N.).CrossRefGoogle Scholar
Pashley, D.P. (1989) Host-associated differentiation in army-worms: an allozyme and mtDNA perspective. pp. 103114in Loxdale, H. & Claridge, M.F. (Eds) Electrophoretic Studies on Agricultural Pests. London, Oxford University Press.Google Scholar
Rogers, A.R. & Harpending, H. (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 552569.Google ScholarPubMed
Rozas, J. & Rozas, R. (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174175.CrossRefGoogle ScholarPubMed
Sakamoto, H., Kageyama, D., Hoshizaki, S. & Ishikawa, Y. (2007) Sex-specific death in the Asian corn borer moth (Ostrinia furnacalis) infected with Wolbachia occurs across larval development. Genome 50, 645652.CrossRefGoogle ScholarPubMed
Samudra, I.M., Emura, K., Hoshizaki, S., Ishikawa, Y. & Tatsuki, S. (2002) Temporal differences in mating behavior between rice- and water-oats-population of the striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae). Applied Entomology and Zoology 37, 257262.CrossRefGoogle Scholar
Schneider, S. & Excoffier, L. (1999) Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 10791089.CrossRefGoogle ScholarPubMed
Slatkin, M. & Hudson, R.R. (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555562.CrossRefGoogle ScholarPubMed
Stouthamer, R., Breeuwer, J.A.J. & Hurst, G.D.D. (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Review of Microbiology 53, 71102.CrossRefGoogle ScholarPubMed
Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585595.CrossRefGoogle ScholarPubMed
Templeton, A.R., Crandall, K.A. & Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619633.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Toda, S. & Murai, T. (2007) Phylogenetic analysis based on mitochondrial COI gene sequences in Thrips tabaci Lindeman (Thysanoptera: Thripidae) in relation to reproductive forms and geographic distribution. Applied Entomology and Zoology 42, 309316.CrossRefGoogle Scholar
Vialatte, A., Dedryver, C.-A., Simon, J.-C., Galman, M. & Plantegenest, M. (2005) Limited genetic exchange between populations of an insect pest living on uncultivated and related cultivated host plants. Proceedings of the Royal Society Series B 272, 10751082.Google ScholarPubMed
Wang, R., Yan, F.M., Li, S.G. & Li, S.W. (1995) Allozyme differentiation among nine populations of the corn borer (Ostrinia) in China. Biochemical Genetics 33, 413420.CrossRefGoogle ScholarPubMed
Zhang, D.X. & Hewitt, G.M. (1996) The use of DNA markers in population-genetics and ecological studies of the desert locust Schistocerca gregaria (Orthoptera: Acrididae). pp. 213230in Symondson, W.O.C. & Liddell, J.E. (Eds) The Ecology of Agricultural Pests: Biochemical Approaches. London, Chapman & Hall.Google Scholar