Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-17T06:23:03.564Z Has data issue: false hasContentIssue false

Intestinal nitrogen and electrolyte movements following fermented milk ingestion in man

Published online by Cambridge University Press:  09 March 2007

Sylvain Mahé
Affiliation:
Institut National de la Recherche Agronomique, Unité de Nutrition Humaine et de Physiologie Intestinale, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France
Philippe Marteau
Affiliation:
Service de Gastro-entérologie, INSERM U290, Hôpital Saint-Lazare, 107 rue du Faubourg Saint-Denis, 75010 Paris, France
Jean-François Huneau
Affiliation:
Institut National de la Recherche Agronomique, Unité de Nutrition Humaine et de Physiologie Intestinale, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France
François Thuillier
Affiliation:
Service de Gastro-entérologie, INSERM U290, Hôpital Saint-Lazare, 107 rue du Faubourg Saint-Denis, 75010 Paris, France
Daniel Tomé
Affiliation:
Institut National de la Recherche Agronomique, Unité de Nutrition Humaine et de Physiologie Intestinale, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study focuses on the digestion and absorption of milk and fermented milk (FM) reflected by gastro-ileal N and electrolyte movements in six healthy volunteers. The N and electrolyte content of the intestinal effluents were analysed both at the beginning of the jejunum and in the distal ileum. The gastric half-emptying time of the liquid phase was significantly (P < 0·05) shorter for milk (35 (SE 2) min) than for FM (60 (SE 2) min). The N balance showed that 58 and 50 % of ingested proteins, milk and FM respectively were absorbed between the stomach and the proximal jejunum and that 91 and 90% respectively were absorbed between the stomach and the terminal ileum in 240 min. Evaluation of mineral absorption indicated that 44 and 67% of Ca was absorbed in the duodenum after milk and FM ingestion respectively, and 41 and 11% of Ca disappeared between the jejunum and the ileum respectively. With regards to N and Ca intestinal availability, the present study confirms that FM products represent an interesting source of N as well as minerals for man. This confers on FM a beneficial effect compared with milk especially for lactase (EC 3.2.1. 108)–deficient subjects and children with persistent diarrhoea.

Type
Absorption from fermented milks
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Adibi, S. A. & Mercer, D. W. (1973). Protein digestion in human intestine as reflected in luminal, mucosal and plasma amino acid concentrations after meals. Journal of Clinical Investigation 52, 15861594.CrossRefGoogle ScholarPubMed
Alm, L. (1981). The effects of fermentation on the biological value of milk proteins evaluated using rats. A study on Swedish fermented milk products. Journal of the Science of Food and Agriculture 32, 12471253.CrossRefGoogle Scholar
Alm, L. (1982). Effect of fermentation on lactose, glucose and galactose content in milk and suitability of fermented milk products for lactose individuals. Journal of Dairy Science 65, 346352.CrossRefGoogle ScholarPubMed
Beau, J. P., Fontaine, O. & Garenne, M. (1990). Management of malnourished children with acute diarrhoea and sugar intolerance. Journal of Tropical Pediatry 36, 8689.CrossRefGoogle ScholarPubMed
Breslaw, E. S. & Kleyn, D. H. (1973). In vitro digestibility of protein in yoghurt at various stages of processing. Journal of Food Science 38, 10161021.CrossRefGoogle Scholar
Chung, Y. C., Kim, Y. S., Shadchehr, A., Garrido, A., MacGregor, I. L. & Sleisenger, M. H. (1979). Protein digestion and absorption in human small intestine. Gastroenterology 76, 14151421.CrossRefGoogle ScholarPubMed
Coste, M. & Tomé, D. (1991). Milk peptides with physiological activities. II. Opioid and immunostimulating peptides derived from milk proteins. Lait 71, 241247.CrossRefGoogle Scholar
De Simone, C., Vesely, R., Negri, R., Bianchi-Salvadori, B., Zanzoglu, S., Cilli, A. & Lucci, L. (1987). Enhancement of immune response of murine Peyer's patches by a diet supplemented with yoghurt. Immunopharmacology and Immunotoxicology 9, 87100.CrossRefGoogle Scholar
Elashoff, J. D., Reedy, T. J. & Meyer, J. H. (1982). Analysis of gastric emptying data. Gastroenterology 83, 13061312.CrossRefGoogle ScholarPubMed
Hargrove, R. E. & Alford, J. A. (1978). Growth rate and feed efficiency of rats fed yoghurt and other fermented milks. Journal of Dairy Science 61, 1119.CrossRefGoogle Scholar
Hitchins, A. D. & McDonough, F. E. (1989). Prophylactic and therapeutic aspects of fermented milk. American Journal of Clinical Nutrition 49, 675684.CrossRefGoogle ScholarPubMed
Houghton, L. A., Hickson, F. & Read, N. W. (1987). Effect of food consistency on gastric emptying in man. Gut 28, 15841588.CrossRefGoogle ScholarPubMed
Houghton, L. A., Mangnall, Y. F. & Read, N. W. (1990). Effect of incorporating fat into a liquid test meal on the relation between intragastric distribution and gastric emptying in human volunteers. Gut 31, 12261229.CrossRefGoogle ScholarPubMed
Hunt, J. N., Smith, J. L. & Jiang, C. L. (1985). Effect of meal volume and energy density on the gastric emptying of carbohydrates. Gastroenterology 89, 13261330.CrossRefGoogle ScholarPubMed
Hyden, S. (1955). A turbidimetric method for the determination of higher polyethylene glycols in biological materials. Annals of the Royal Agricultural College of Sweden 21, 139145.Google Scholar
Lewis, N. M., Marcus, M. S. U., Behling, A. R. & Greger, J. L. (1989). Calcium supplements and milk: effects on acid-base balance and on retention of calcium, magnesium and phosphorus. American Journal of Clinical Nutrition 49, 527533.CrossRefGoogle Scholar
Mahé, S., Huneau, J. F., Marteau, P., Thuillier, F. & Tomé, D. (1992). Gastroileal nitrogen and electrolyte movements after bovine milk ingestion in humans. American Journal of Clinical Nutrition 56, 410416.CrossRefGoogle ScholarPubMed
Mahé, S., Messing, B., Thuillier, F. & Tomé, D. (1991). Digestion of bovine milk proteins in patients with a high jejunostomy. American Journal of Clinical Nutrition 54, 534538.CrossRefGoogle ScholarPubMed
Malagelada, J. R., Longstreth, G. F., Summerskill, W. H. J. & Go, V. L. W. (1976). Measurement of gastric functions during digestion of ordinary solid meals in man. Gastroenterology 70, 203210.CrossRefGoogle ScholarPubMed
Marteau, P., Flourié, B., Pochart, P., Chastang, C., Desjeux, J. F. & Rambaud, J. C. (1990). Effect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. British Journal of Nutrition 64, 7179.CrossRefGoogle Scholar
Martini, M. C., Kukielka, D. & Savaiano, D. A. (1991). Lactose digestion from yoghurt: influence of a meal and additional lactose. American Journal of Clinical Nutrition 53, 12531258.CrossRefGoogle ScholarPubMed
Modigliani, R., Rambaud, J. C. & Bernier, J. J. (1973). The method of intraluminal perfusion of the human small intestine. I. Principle and technique. Digestion 9, 176192.CrossRefGoogle ScholarPubMed
Nixon, S. E. & Mawer, G. E. (1970). The digestion and absorption of protein in man. I. The site of absorption. British Journal of Nutrition 24, 227240.CrossRefGoogle Scholar
Perdigon, G., Nader, M. E., Alvarez, S., Oliver, G. & Pesce, A. A. (1990). Prevention of gastro-intestinal infection using immunobiological methods with milk fermented with Lactobacillus caseä and Lactobacillus acidophilus. Journal of Dairy Science 57, 255264.Google Scholar
Rasic, J., Stojsavljevic, T. & Curcic, R. (1971). A study on the amino acids of yoghurt. II. Amino acids content and biological value of the proteins of different kinds of yoghurt. Milchwissenschaft 26, 219224.Google Scholar
Recker, R. R., Bammi, A., Barger-Lux, M. J. & Heaney, R. P. (1988). Calcium absorbabllity from milk products, an imitation milk, and calcium carbonate. American Journal of Clinical Nutrition 47, 9395.CrossRefGoogle ScholarPubMed
Ruskoné, A., Cosnes, J., Vidon, N., Couzigou, P. & Bernier, J. J. (1980). Sécrétion et vidange gastriques aprés differents repas homogénéisés chez l'homme (Gastric emptying and gastric secretion after variable homogenized meals in man). Gastroentérologie Clinique et Biologique 4, 171785.Google ScholarPubMed
Statistical Analysis Systems (1990). SAS 6.03. Cary, NC: SAS Institute Inc.Google Scholar
Schaafsma, G., Dekker, P. R. & De Waard, H. (1988). Nutritional aspects of yoghurt. 2. Bioavailability of essential minerals and trace elements. Netherlands Milk and Dairy, Journal 42, 135146.Google Scholar
Siegel, J. A., Urbain, J. L., Adler, L. P., Charkes, N. D., Maurer, A. H., Krevsky, B., Knight, L. C., Fisher, R. S. & Malmud, L. S. (1988). Biphasic nature of gastric emptying. Gut 29, 8589.CrossRefGoogle ScholarPubMed
Smith, T. H., Kolars, J. C., Savaino, D. A. & Levitt, M. D. (1985). Absorption of calcium from milk and yoghurt. American Journal of Clinical Nutrition 42, 11971200.CrossRefGoogle Scholar