Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T06:10:07.062Z Has data issue: false hasContentIssue false

Production of tricarballylic acid by rumen microorganisms and its potential toxicity in ruminant tissue metabolism

Published online by Cambridge University Press:  09 March 2007

James B. Russell
Affiliation:
Agricultural Research Service, USDA and Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
Neil Forsberg
Affiliation:
Department of Animal Science, Oregon State University, Corvallis, Oregon 97331, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rumen microorganisms convert trans-aconitate to tricarballylate. The following experiments describe factors affecting the yield of tricarballylate, its absorption from the rumen into blood and its effect on mammalian citric acid cycle activity in vitro.

2. When mixed rumen microorganisms were incubated in vitro with Timothy hay (Phleum praiense L.) and 6.7 mM-trans-aconitate, 64 % of the trans-aconitate was converted to tricarballylate. Chloroform and nirate treatments inhibited methane production and increased the yield of tricarballylate to 82 and 75% respectively.

3. Sheep given gelatin capsules filled with 20 g trans-aconitate absorbed tricarballylate and the plasma concentration ranged from 0.3 to 0.5 mM 9 h after administration. Feeding an additional 40 g potassium chloride had little effect on plasma tricarballylate concentrations. Between 9 and 36 h there was a nearly linear decline in plasma tricarballylate.

4. Tricarballylate was a competitive inhibitor of the enzyme, aconitate hydratase (aconitase; EC 4.2.1.3), and the inhibitor constant, KI, was 0.52 mM. This KI value was similar to the Michaelis-Menten constant (Km) of the enzyme for citrate.

5. When liver slices from sheep were incubated with increasing concentrations of tricarballylate, [I4C]acetate oxidation decreased. However, even at relatively high concentrations (8 mM), oxidation was still greater than 80% of the maximum. Oxidation of [I4C]acetate by isolated rat liver cells was inhibited to a greater extent by tricarballylate. Concentrations as low as 0.5 mM caused a 30% inhibition of citric acid cycle activity.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Allison, M. J. & Reddy, C. A. (1984). In Current perspectives in microbial ecologypp. 248256 [Klug, M. J. and Reddy, C. A., editors]. Washington, DC: American Society for Microbiology.Google Scholar
Baldwin, R. L., Wood, W. A. & Emery, R. S. (1965). Biochimica et Biophysica Acta 97, 202213.CrossRefGoogle Scholar
Barta, A. L. (1973). Crop Science 13, 113114.CrossRefGoogle Scholar
Bergmeyer, H. U. & Klotsch, H. (1965). In Methods of Enzymatic Analysis, pp. 99102 [Bergmeyer, H. U., editor]. New York: Academic Press.CrossRefGoogle Scholar
Bohman, V. R., Horn, F. P., Littledike, E. T., Hurst, J. G. & Griffen, D. (1983 a). Journal of Animal Science 57, 13641373.CrossRefGoogle Scholar
Bohman, V. R., Horn, F. P., Stewart, B. A., Mathers, A. C. & Grunes, D. L. (1983 b). Journal of Animal Science 57, 13521363.CrossRefGoogle Scholar
Bohman, V. R., Lesperance, A. L., Harding, G. D. & Grunes, D. L. (1969). Journal of Animal Science 29, 99102.CrossRefGoogle Scholar
Bryant, M. P. (1956). Journal of Bacteriology 72, 162167.CrossRefGoogle Scholar
Burau, R. G. & Stout, P. R. (1965). Science 150, 766767.CrossRefGoogle Scholar
Chen, M. & Wolin, M. J. (1977). Applied Environmental Microbiology 34, 756759.CrossRefGoogle Scholar
Gill, J. L. (1973). Journal of Dairy Science 56, 973977.CrossRefGoogle Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analysis, US Department of Agriculture Handbook no. 379. Washington, DC: US Department of Agriculture.Google Scholar
Grunes, D. L. (1967). Cornell Nutrition Conference for Feed Manufacturers. Buffalo N.Y. p. 105. Ithaca, NY: Cornell Agricultural Experiment Station.Google Scholar
Grunes, D. L., Stout, P. R. & Brownell, J. R. (1970). Advances in Agronomy 22, 331374.CrossRefGoogle Scholar
Hughes, P. E. & Tove, S. B. (1980). Journal of Biological Chemistry 255, 44474452.CrossRefGoogle Scholar
Kennedy, G. S. (1968). Australian Journal of Biological Sciences 21, 529538.CrossRefGoogle Scholar
Kirkby, E. A. (1969). In Ecological Aspects of the Mineral Nutrition of Plants, pp. 215235 [Rorison, I. H., editor]. Oxford:Blackwell Scientific Publishers.Google Scholar
Linehan, B., Scheifinger, C. C. & Wolin, M. J. (1978). Applied Environmental Microbiology 35, 317322.CrossRefGoogle Scholar
Lomba, F., Fumiere, I., Chauvaux, G., Binot, H. & Bienfet, V. (1969 a). Annales de Medicine et Veterinare 113, 2223.Google Scholar
Lomba, F., Fumiere, I., Chauvaux, G., Binot, H. & Bienfet, V. (1969 b). Annates de Medicine et Veterinare 113, 90100.Google Scholar
Mayland, H. F. & Grunes, D. L. (1979). In Grass Tetany, pp. 123175 [Rendig, V. V. and Grunes, D. L., editors]. Madison, Wisconsin: American Society of Agronomy.Google Scholar
Morrison, J. F. (1954). Australian Journal of Experimental Biology 32, 867876.CrossRefGoogle Scholar
Paynter, M. J. B. & Elsden, S. R. (1970). Journal of General Microbiology 61, 17.CrossRefGoogle Scholar
Perkin-Elmer, (1982). Analytical Methods for Atomic Absorption Spectrophotometry. Norwalk, Conn.: Perkin-Elmer.Google Scholar
Peters, R. A. (1957). Advances in Enzymology 18, 113119.Google Scholar
Peters, R. A. & Wilson, T. H. (1952). Biochimica et Biophysica Acta 9, 310315.CrossRefGoogle Scholar
Prior, R. L., Grunes, D. L., Patterson, R. P., Smith, F. W., Mayland, H. F. & Visek, W. J. (1973). Journal of Agricultural and Food Chemistry 21, 1377.CrossRefGoogle Scholar
Russell, J. B. (1985). Applied Environmental Microbiology 49, 120126.CrossRefGoogle Scholar
Russell, J. B. & Van Soest, P. J. (1984). Applied Environmental Microbiology 41, 155159.CrossRefGoogle Scholar
Scheifinger, C. C. & Wolin, M. J. (1973). Applied Microbiology 26, 789795.CrossRefGoogle Scholar
Scotto, K. C., Bohman, V. R. & Lesperance, A. L. (1971). Journal of Animal Science 32, 354358.CrossRefGoogle Scholar
Seglen, P. O. (1976). In Methods in CellBiology, vol. 13, pp. 2983 [Prescott, D. M., editor]. New York: Academic Press.Google Scholar
Sigma Chemical Co. (1977). Aconitase Methodology Sheet A-5384. St Louis, MO: Sigma Chemical Co.Google Scholar
Stout, P. R., Brownell, J. R. & Bureau, R. G. (1967). Agronomy Journal 59, 2124.CrossRefGoogle Scholar
Wolin, M. J. (1975). In Digestion and Metabolism in the Ruminant, pp. 134148 [McDonald, I. W.&Warner, A. C. L., editors]. Armidale, NSW, Australia: University of New England Publishing Unit.Google Scholar
Wolin, M. J., Wolin, E. A. & Jacobs, N. J. (1961). Journal of Bacteriology 8, 911917.CrossRefGoogle Scholar
Wright, D. E. (1971). Applied Microbiology 21, 165168.CrossRefGoogle Scholar
Wright, D. E. & Wolff, J. E. (1969). New Zealand Journal of Agricultural Research 12, 287292.CrossRefGoogle Scholar